Matches in SemOpenAlex for { <https://semopenalex.org/work/W3168608579> ?p ?o ?g. }
- W3168608579 endingPage "104548" @default.
- W3168608579 startingPage "104548" @default.
- W3168608579 abstract "Background Autism spectrum disorder is a common group of conditions affecting about one in 54 children. Electroencephalogram (EEG) signals from children with autism have a common morphological pattern which makes them distinguishable from normal EEG. We have used this type of signal to design and implement an automated autism detection model. Materials and method We propose a hybrid lightweight deep feature extractor to obtain high classification performance. The system was designed and tested with a big EEG dataset that contained signals from autism patients and normal controls. (i) A new signal to image conversion model is presented in this paper. In this work, features are extracted from EEG signal using one-dimensional local binary pattern (1D_LBP) and the generated features are utilized as input of the short time Fourier transform (STFT) to generate spectrogram images. (ii) The deep features of the generated spectrogram images are extracted using a combination of pre-trained MobileNetV2, ShuffleNet, and SqueezeNet models. This method is named hybrid deep lightweight feature generator. (iii) A two-layered ReliefF algorithm is used for feature ranking and feature selection. (iv) The most discriminative features are fed to various shallow classifiers, developed using a 10-fold cross-validation strategy for automated autism detection. Results A support vector machine (SVM) classifier reached 96.44% accuracy based on features from the proposed model. Conclusions The results strongly indicate that the proposed hybrid deep lightweight feature extractor is suitable for autism detection using EEG signals. The model is ready to serve as part of an adjunct tool that aids neurologists during autism diagnosis in medical centers." @default.
- W3168608579 created "2021-06-22" @default.
- W3168608579 creator A5012724019 @default.
- W3168608579 creator A5016221020 @default.
- W3168608579 creator A5029287310 @default.
- W3168608579 creator A5040772000 @default.
- W3168608579 creator A5045783666 @default.
- W3168608579 creator A5049093311 @default.
- W3168608579 creator A5054115113 @default.
- W3168608579 creator A5062153529 @default.
- W3168608579 creator A5065100665 @default.
- W3168608579 date "2021-07-01" @default.
- W3168608579 modified "2023-10-11" @default.
- W3168608579 title "Automated ASD detection using hybrid deep lightweight features extracted from EEG signals" @default.
- W3168608579 cites W1496968292 @default.
- W3168608579 cites W1814020952 @default.
- W3168608579 cites W1981173169 @default.
- W3168608579 cites W1987804837 @default.
- W3168608579 cites W1991089029 @default.
- W3168608579 cites W1992206607 @default.
- W3168608579 cites W1993010418 @default.
- W3168608579 cites W2000038800 @default.
- W3168608579 cites W2004669647 @default.
- W3168608579 cites W2028723065 @default.
- W3168608579 cites W2055019700 @default.
- W3168608579 cites W2067082332 @default.
- W3168608579 cites W2070113748 @default.
- W3168608579 cites W2081437165 @default.
- W3168608579 cites W2090451308 @default.
- W3168608579 cites W2091600398 @default.
- W3168608579 cites W2117539524 @default.
- W3168608579 cites W2163352848 @default.
- W3168608579 cites W2171693726 @default.
- W3168608579 cites W2199002398 @default.
- W3168608579 cites W2540507509 @default.
- W3168608579 cites W2590940923 @default.
- W3168608579 cites W2593658800 @default.
- W3168608579 cites W2593929307 @default.
- W3168608579 cites W2618530766 @default.
- W3168608579 cites W2740113900 @default.
- W3168608579 cites W2745968167 @default.
- W3168608579 cites W2755101507 @default.
- W3168608579 cites W2756425885 @default.
- W3168608579 cites W2797694788 @default.
- W3168608579 cites W2802719250 @default.
- W3168608579 cites W2810959326 @default.
- W3168608579 cites W2817324925 @default.
- W3168608579 cites W2886793380 @default.
- W3168608579 cites W2889464031 @default.
- W3168608579 cites W2890564211 @default.
- W3168608579 cites W2897620540 @default.
- W3168608579 cites W2910712542 @default.
- W3168608579 cites W2921168875 @default.
- W3168608579 cites W2949426853 @default.
- W3168608579 cites W2963125010 @default.
- W3168608579 cites W2963163009 @default.
- W3168608579 cites W2965023734 @default.
- W3168608579 cites W2966632508 @default.
- W3168608579 cites W2980090549 @default.
- W3168608579 cites W2991344754 @default.
- W3168608579 cites W3003453726 @default.
- W3168608579 cites W3005077487 @default.
- W3168608579 cites W3027179734 @default.
- W3168608579 cites W3042239862 @default.
- W3168608579 cites W3099170544 @default.
- W3168608579 cites W3129234057 @default.
- W3168608579 cites W3133345122 @default.
- W3168608579 cites W3136029927 @default.
- W3168608579 cites W3210155031 @default.
- W3168608579 cites W4210708461 @default.
- W3168608579 doi "https://doi.org/10.1016/j.compbiomed.2021.104548" @default.
- W3168608579 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34119923" @default.
- W3168608579 hasPublicationYear "2021" @default.
- W3168608579 type Work @default.
- W3168608579 sameAs 3168608579 @default.
- W3168608579 citedByCount "54" @default.
- W3168608579 countsByYear W31686085792021 @default.
- W3168608579 countsByYear W31686085792022 @default.
- W3168608579 countsByYear W31686085792023 @default.
- W3168608579 crossrefType "journal-article" @default.
- W3168608579 hasAuthorship W3168608579A5012724019 @default.
- W3168608579 hasAuthorship W3168608579A5016221020 @default.
- W3168608579 hasAuthorship W3168608579A5029287310 @default.
- W3168608579 hasAuthorship W3168608579A5040772000 @default.
- W3168608579 hasAuthorship W3168608579A5045783666 @default.
- W3168608579 hasAuthorship W3168608579A5049093311 @default.
- W3168608579 hasAuthorship W3168608579A5054115113 @default.
- W3168608579 hasAuthorship W3168608579A5062153529 @default.
- W3168608579 hasAuthorship W3168608579A5065100665 @default.
- W3168608579 hasConcept C153180895 @default.
- W3168608579 hasConcept C154945302 @default.
- W3168608579 hasConcept C15744967 @default.
- W3168608579 hasConcept C169760540 @default.
- W3168608579 hasConcept C28490314 @default.
- W3168608579 hasConcept C41008148 @default.
- W3168608579 hasConcept C522805319 @default.
- W3168608579 hasConceptScore W3168608579C153180895 @default.
- W3168608579 hasConceptScore W3168608579C154945302 @default.