Matches in SemOpenAlex for { <https://semopenalex.org/work/W3168771211> ?p ?o ?g. }
- W3168771211 endingPage "9096" @default.
- W3168771211 startingPage "9077" @default.
- W3168771211 abstract "In this paper, we propose a simple global optimisation algorithm inspired by Pareto's principle. This algorithm samples most of its solutions within prominent search domains and is equipped with a self-adaptive mechanism to control the dynamic tightening of the prominent domains while the greediness of the algorithm increases over time (iterations). Unlike traditional metaheuristics, the proposed method has no direct mutation- or crossover-like operations. It depends solely on the sequential random sampling that can be used in diversification and intensification processes while keeping the information-flow between generations and the structural bias at a minimum. By using a simple topology, the algorithm avoids premature convergence by sampling new solutions every generation. A simple theoretical derivation revealed that the exploration of this approach is unbiased and the rate of the diversification is constant during the runtime. The trade-off balance between the diversification and the intensification is explained theoretically and experimentally. This proposed approach has been benchmarked against standard optimisation problems as well as a selected set of simple and complex engineering applications. We used 26 standard benchmarks with different properties that cover most of the optimisation problems' nature, three traditional engineering problems, and one real complex engineering problem from the state-of-the-art literature. The algorithm performs well in finding global minima for nonconvex and multimodal functions, especially with high dimensional problems and it was found very competitive in comparison with the recent algorithmic proposals. Moreover, the algorithm outperforms and scales better than recent algorithms when it is benchmarked under a limited number of iterations for the composite CEC2017 problems. The design of this algorithm is kept simple so it can be easily coupled or hybridised with other search paradigms. The code of the algorithm is provided in C++14, Python3.7, and Octave (Matlab)." @default.
- W3168771211 created "2021-06-22" @default.
- W3168771211 creator A5012868105 @default.
- W3168771211 creator A5069185743 @default.
- W3168771211 date "2021-05-29" @default.
- W3168771211 modified "2023-10-01" @default.
- W3168771211 title "Pareto-like sequential sampling heuristic for global optimisation" @default.
- W3168771211 cites W1659842140 @default.
- W3168771211 cites W196007500 @default.
- W3168771211 cites W1967692477 @default.
- W3168771211 cites W1969545943 @default.
- W3168771211 cites W1976744965 @default.
- W3168771211 cites W1983221302 @default.
- W3168771211 cites W1984753492 @default.
- W3168771211 cites W2024352272 @default.
- W3168771211 cites W2050842780 @default.
- W3168771211 cites W2063303403 @default.
- W3168771211 cites W2067703920 @default.
- W3168771211 cites W2068582700 @default.
- W3168771211 cites W2076445178 @default.
- W3168771211 cites W2092700130 @default.
- W3168771211 cites W2093188170 @default.
- W3168771211 cites W2093229042 @default.
- W3168771211 cites W2109364787 @default.
- W3168771211 cites W2114355232 @default.
- W3168771211 cites W2119401655 @default.
- W3168771211 cites W2146879413 @default.
- W3168771211 cites W2151554678 @default.
- W3168771211 cites W2152195021 @default.
- W3168771211 cites W2290883490 @default.
- W3168771211 cites W2375524123 @default.
- W3168771211 cites W2576928011 @default.
- W3168771211 cites W2766114129 @default.
- W3168771211 cites W2768064490 @default.
- W3168771211 cites W2802050029 @default.
- W3168771211 cites W28462632 @default.
- W3168771211 cites W2885087041 @default.
- W3168771211 cites W2888688605 @default.
- W3168771211 cites W2921893399 @default.
- W3168771211 cites W2933685232 @default.
- W3168771211 cites W2943528199 @default.
- W3168771211 cites W2963679418 @default.
- W3168771211 cites W2981562718 @default.
- W3168771211 cites W3004833987 @default.
- W3168771211 cites W3012988996 @default.
- W3168771211 cites W3015883578 @default.
- W3168771211 cites W3044618739 @default.
- W3168771211 cites W3080473944 @default.
- W3168771211 cites W883434633 @default.
- W3168771211 doi "https://doi.org/10.1007/s00500-021-05853-8" @default.
- W3168771211 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8550146" @default.
- W3168771211 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34720704" @default.
- W3168771211 hasPublicationYear "2021" @default.
- W3168771211 type Work @default.
- W3168771211 sameAs 3168771211 @default.
- W3168771211 citedByCount "7" @default.
- W3168771211 countsByYear W31687712112021 @default.
- W3168771211 countsByYear W31687712112022 @default.
- W3168771211 countsByYear W31687712112023 @default.
- W3168771211 crossrefType "journal-article" @default.
- W3168771211 hasAuthorship W3168771211A5012868105 @default.
- W3168771211 hasAuthorship W3168771211A5069185743 @default.
- W3168771211 hasBestOaLocation W31687712111 @default.
- W3168771211 hasConcept C106131492 @default.
- W3168771211 hasConcept C109718341 @default.
- W3168771211 hasConcept C11413529 @default.
- W3168771211 hasConcept C122507166 @default.
- W3168771211 hasConcept C126255220 @default.
- W3168771211 hasConcept C134306372 @default.
- W3168771211 hasConcept C137635306 @default.
- W3168771211 hasConcept C140779682 @default.
- W3168771211 hasConcept C154945302 @default.
- W3168771211 hasConcept C159149176 @default.
- W3168771211 hasConcept C173801870 @default.
- W3168771211 hasConcept C186633575 @default.
- W3168771211 hasConcept C26517878 @default.
- W3168771211 hasConcept C31972630 @default.
- W3168771211 hasConcept C33923547 @default.
- W3168771211 hasConcept C38652104 @default.
- W3168771211 hasConcept C41008148 @default.
- W3168771211 hasConcept C57869625 @default.
- W3168771211 hasConceptScore W3168771211C106131492 @default.
- W3168771211 hasConceptScore W3168771211C109718341 @default.
- W3168771211 hasConceptScore W3168771211C11413529 @default.
- W3168771211 hasConceptScore W3168771211C122507166 @default.
- W3168771211 hasConceptScore W3168771211C126255220 @default.
- W3168771211 hasConceptScore W3168771211C134306372 @default.
- W3168771211 hasConceptScore W3168771211C137635306 @default.
- W3168771211 hasConceptScore W3168771211C140779682 @default.
- W3168771211 hasConceptScore W3168771211C154945302 @default.
- W3168771211 hasConceptScore W3168771211C159149176 @default.
- W3168771211 hasConceptScore W3168771211C173801870 @default.
- W3168771211 hasConceptScore W3168771211C186633575 @default.
- W3168771211 hasConceptScore W3168771211C26517878 @default.
- W3168771211 hasConceptScore W3168771211C31972630 @default.
- W3168771211 hasConceptScore W3168771211C33923547 @default.
- W3168771211 hasConceptScore W3168771211C38652104 @default.
- W3168771211 hasConceptScore W3168771211C41008148 @default.