Matches in SemOpenAlex for { <https://semopenalex.org/work/W3168794370> ?p ?o ?g. }
- W3168794370 endingPage "87317" @default.
- W3168794370 startingPage "87310" @default.
- W3168794370 abstract "The early diagnosis of chronic diseases plays a vital role in the field of healthcare communities and biomedical, where it is necessary for detecting the disease at an initial phase to reduce the death rate. This paper investigates the use of feature selection, dimensionality reduction and classification techniques to predict and diagnose chronic disease. The appropriate selection of attributes plays a crucial role in improving the classification accuracy of the diagnosis systems. Additionally, dimensionality reduction techniques effectively improve the overall performance of the machine learning algorithms. On chronic disease databases, the classification techniques deliver efficient predictive results by developing intelligent, adaptive and automated system. Parallel and adaptive classification techniques are also analyzed in chronic disease diagnosis which is used to stimulate the classification procedure and to improve the computational cost and time. This survey article represents the overview of feature selection, dimensionality reduction and classification techniques and their inherent benefits and drawbacks." @default.
- W3168794370 created "2021-06-22" @default.
- W3168794370 creator A5012452015 @default.
- W3168794370 creator A5045219052 @default.
- W3168794370 date "2021-01-01" @default.
- W3168794370 modified "2023-10-12" @default.
- W3168794370 title "Review of Feature Selection, Dimensionality Reduction and Classification for Chronic Disease Diagnosis" @default.
- W3168794370 cites W1591701931 @default.
- W3168794370 cites W1628689379 @default.
- W3168794370 cites W1851861644 @default.
- W3168794370 cites W1964832275 @default.
- W3168794370 cites W1975056225 @default.
- W3168794370 cites W1995396954 @default.
- W3168794370 cites W2015452969 @default.
- W3168794370 cites W2016204385 @default.
- W3168794370 cites W2026841079 @default.
- W3168794370 cites W2057250428 @default.
- W3168794370 cites W2088249484 @default.
- W3168794370 cites W2091255497 @default.
- W3168794370 cites W2139460367 @default.
- W3168794370 cites W2143043751 @default.
- W3168794370 cites W2149772057 @default.
- W3168794370 cites W2214795254 @default.
- W3168794370 cites W2221500417 @default.
- W3168794370 cites W2232748179 @default.
- W3168794370 cites W2247857899 @default.
- W3168794370 cites W2277694666 @default.
- W3168794370 cites W2536981762 @default.
- W3168794370 cites W2717356422 @default.
- W3168794370 cites W2767768852 @default.
- W3168794370 cites W2768045609 @default.
- W3168794370 cites W2776708372 @default.
- W3168794370 cites W2789984085 @default.
- W3168794370 cites W2794607182 @default.
- W3168794370 cites W2796194776 @default.
- W3168794370 cites W2799791930 @default.
- W3168794370 cites W2811085318 @default.
- W3168794370 cites W2890873793 @default.
- W3168794370 cites W2906396551 @default.
- W3168794370 cites W2913228117 @default.
- W3168794370 cites W2915050532 @default.
- W3168794370 cites W2938285755 @default.
- W3168794370 cites W2941162019 @default.
- W3168794370 cites W2954665897 @default.
- W3168794370 cites W2955086442 @default.
- W3168794370 cites W2973691210 @default.
- W3168794370 cites W2976204988 @default.
- W3168794370 cites W2979294180 @default.
- W3168794370 cites W2987455151 @default.
- W3168794370 cites W2997162363 @default.
- W3168794370 cites W2997982564 @default.
- W3168794370 cites W3000565840 @default.
- W3168794370 cites W3004106880 @default.
- W3168794370 cites W3018828627 @default.
- W3168794370 cites W3029991946 @default.
- W3168794370 cites W3042417102 @default.
- W3168794370 cites W3047572591 @default.
- W3168794370 cites W3088283184 @default.
- W3168794370 cites W4254901917 @default.
- W3168794370 cites W614119048 @default.
- W3168794370 doi "https://doi.org/10.1109/access.2021.3088613" @default.
- W3168794370 hasPublicationYear "2021" @default.
- W3168794370 type Work @default.
- W3168794370 sameAs 3168794370 @default.
- W3168794370 citedByCount "13" @default.
- W3168794370 countsByYear W31687943702021 @default.
- W3168794370 countsByYear W31687943702022 @default.
- W3168794370 countsByYear W31687943702023 @default.
- W3168794370 crossrefType "journal-article" @default.
- W3168794370 hasAuthorship W3168794370A5012452015 @default.
- W3168794370 hasAuthorship W3168794370A5045219052 @default.
- W3168794370 hasBestOaLocation W31687943701 @default.
- W3168794370 hasConcept C110083411 @default.
- W3168794370 hasConcept C111030470 @default.
- W3168794370 hasConcept C111335779 @default.
- W3168794370 hasConcept C119857082 @default.
- W3168794370 hasConcept C124101348 @default.
- W3168794370 hasConcept C138885662 @default.
- W3168794370 hasConcept C148483581 @default.
- W3168794370 hasConcept C153180895 @default.
- W3168794370 hasConcept C154945302 @default.
- W3168794370 hasConcept C2524010 @default.
- W3168794370 hasConcept C2776401178 @default.
- W3168794370 hasConcept C33923547 @default.
- W3168794370 hasConcept C41008148 @default.
- W3168794370 hasConcept C41895202 @default.
- W3168794370 hasConcept C70518039 @default.
- W3168794370 hasConcept C81917197 @default.
- W3168794370 hasConceptScore W3168794370C110083411 @default.
- W3168794370 hasConceptScore W3168794370C111030470 @default.
- W3168794370 hasConceptScore W3168794370C111335779 @default.
- W3168794370 hasConceptScore W3168794370C119857082 @default.
- W3168794370 hasConceptScore W3168794370C124101348 @default.
- W3168794370 hasConceptScore W3168794370C138885662 @default.
- W3168794370 hasConceptScore W3168794370C148483581 @default.
- W3168794370 hasConceptScore W3168794370C153180895 @default.
- W3168794370 hasConceptScore W3168794370C154945302 @default.
- W3168794370 hasConceptScore W3168794370C2524010 @default.