Matches in SemOpenAlex for { <https://semopenalex.org/work/W3168889555> ?p ?o ?g. }
- W3168889555 endingPage "504" @default.
- W3168889555 startingPage "498" @default.
- W3168889555 abstract "Collecting enough samples is difficult in real applications. Several interval-based non-probabilistic reliability methods have been reported. The key of these methods is to estimate system non-probabilistic reliability index. In this paper, a new method is proposed to calculate system non-probabilistic reliability index. Kriging model is used to replace time-consuming simulations, and the efficient global optimization is used to determine the new training samples. A refinement learning function is proposed to determine the best component (or performance function) during the iterative process. The proposed refinement learning function has considered two important factors: (1) the contributions of components to system nonprobabilistic reliability index, and (2) the accuracy of the Kriging model at current iteration. Two stopping criteria are given to terminate the algorithm. The system non-probabilistic index is finally calculated based on the Kriging model and Monte Carlo simulation. Two numerical examples are given to show the applicability of the proposed method." @default.
- W3168889555 created "2021-06-22" @default.
- W3168889555 creator A5028727957 @default.
- W3168889555 creator A5044301848 @default.
- W3168889555 date "2021-09-30" @default.
- W3168889555 modified "2023-10-16" @default.
- W3168889555 title "An efficient method for calculating system non-probabilistic reliability index" @default.
- W3168889555 cites W1510052597 @default.
- W3168889555 cites W1975097336 @default.
- W3168889555 cites W1989321907 @default.
- W3168889555 cites W1990823746 @default.
- W3168889555 cites W2007535697 @default.
- W3168889555 cites W2029138893 @default.
- W3168889555 cites W2068769644 @default.
- W3168889555 cites W2077245634 @default.
- W3168889555 cites W2096285034 @default.
- W3168889555 cites W2130312343 @default.
- W3168889555 cites W2142041957 @default.
- W3168889555 cites W2159190686 @default.
- W3168889555 cites W2160407691 @default.
- W3168889555 cites W2171429214 @default.
- W3168889555 cites W2402382522 @default.
- W3168889555 cites W2478899349 @default.
- W3168889555 cites W2611228700 @default.
- W3168889555 cites W2735597532 @default.
- W3168889555 cites W2757101479 @default.
- W3168889555 cites W2775466467 @default.
- W3168889555 cites W2884196713 @default.
- W3168889555 cites W2905401036 @default.
- W3168889555 cites W2908794637 @default.
- W3168889555 cites W2910830800 @default.
- W3168889555 cites W2954458927 @default.
- W3168889555 cites W2965490185 @default.
- W3168889555 cites W2979585937 @default.
- W3168889555 cites W2986184771 @default.
- W3168889555 cites W2990993108 @default.
- W3168889555 cites W3010569796 @default.
- W3168889555 cites W3010795939 @default.
- W3168889555 cites W3044937396 @default.
- W3168889555 cites W3120731623 @default.
- W3168889555 doi "https://doi.org/10.17531/ein.2021.3.10" @default.
- W3168889555 hasPublicationYear "2021" @default.
- W3168889555 type Work @default.
- W3168889555 sameAs 3168889555 @default.
- W3168889555 citedByCount "6" @default.
- W3168889555 countsByYear W31688895552022 @default.
- W3168889555 countsByYear W31688895552023 @default.
- W3168889555 crossrefType "journal-article" @default.
- W3168889555 hasAuthorship W3168889555A5028727957 @default.
- W3168889555 hasAuthorship W3168889555A5044301848 @default.
- W3168889555 hasBestOaLocation W31688895551 @default.
- W3168889555 hasConcept C105795698 @default.
- W3168889555 hasConcept C11413529 @default.
- W3168889555 hasConcept C114614502 @default.
- W3168889555 hasConcept C119857082 @default.
- W3168889555 hasConcept C121332964 @default.
- W3168889555 hasConcept C126255220 @default.
- W3168889555 hasConcept C127413603 @default.
- W3168889555 hasConcept C14036430 @default.
- W3168889555 hasConcept C154945302 @default.
- W3168889555 hasConcept C163258240 @default.
- W3168889555 hasConcept C19499675 @default.
- W3168889555 hasConcept C200601418 @default.
- W3168889555 hasConcept C26517878 @default.
- W3168889555 hasConcept C2778067643 @default.
- W3168889555 hasConcept C33923547 @default.
- W3168889555 hasConcept C38652104 @default.
- W3168889555 hasConcept C41008148 @default.
- W3168889555 hasConcept C43214815 @default.
- W3168889555 hasConcept C49937458 @default.
- W3168889555 hasConcept C62520636 @default.
- W3168889555 hasConcept C78458016 @default.
- W3168889555 hasConcept C81692654 @default.
- W3168889555 hasConcept C86803240 @default.
- W3168889555 hasConceptScore W3168889555C105795698 @default.
- W3168889555 hasConceptScore W3168889555C11413529 @default.
- W3168889555 hasConceptScore W3168889555C114614502 @default.
- W3168889555 hasConceptScore W3168889555C119857082 @default.
- W3168889555 hasConceptScore W3168889555C121332964 @default.
- W3168889555 hasConceptScore W3168889555C126255220 @default.
- W3168889555 hasConceptScore W3168889555C127413603 @default.
- W3168889555 hasConceptScore W3168889555C14036430 @default.
- W3168889555 hasConceptScore W3168889555C154945302 @default.
- W3168889555 hasConceptScore W3168889555C163258240 @default.
- W3168889555 hasConceptScore W3168889555C19499675 @default.
- W3168889555 hasConceptScore W3168889555C200601418 @default.
- W3168889555 hasConceptScore W3168889555C26517878 @default.
- W3168889555 hasConceptScore W3168889555C2778067643 @default.
- W3168889555 hasConceptScore W3168889555C33923547 @default.
- W3168889555 hasConceptScore W3168889555C38652104 @default.
- W3168889555 hasConceptScore W3168889555C41008148 @default.
- W3168889555 hasConceptScore W3168889555C43214815 @default.
- W3168889555 hasConceptScore W3168889555C49937458 @default.
- W3168889555 hasConceptScore W3168889555C62520636 @default.
- W3168889555 hasConceptScore W3168889555C78458016 @default.
- W3168889555 hasConceptScore W3168889555C81692654 @default.
- W3168889555 hasConceptScore W3168889555C86803240 @default.
- W3168889555 hasIssue "3" @default.