Matches in SemOpenAlex for { <https://semopenalex.org/work/W3168996614> ?p ?o ?g. }
- W3168996614 endingPage "114560" @default.
- W3168996614 startingPage "114560" @default.
- W3168996614 abstract "The Kolmogorov n-width of the solution manifolds of transport-dominated problems can decay slowly. As a result, it can be challenging to design efficient and accurate reduced order models (ROMs) for such problems. To address this issue, we propose a new learning-based projection method to construct nonlinear adaptive ROMs for transport problems. The construction follows the offline–online decomposition. In the offline stage, we train a neural network to construct adaptive reduced basis dependent on time and model parameters. In the online stage, we project the solution to the learned reduced manifold. Inheriting the merits from both deep learning and the projection method, the proposed method is more efficient than the conventional linear projection-based methods, and may reduce the generalization error of a solely learning-based ROM. Unlike some learning-based projection methods, the proposed method does not need to take derivatives of the neural network in the online stage." @default.
- W3168996614 created "2021-06-22" @default.
- W3168996614 creator A5009370806 @default.
- W3168996614 creator A5015102287 @default.
- W3168996614 creator A5077120359 @default.
- W3168996614 date "2023-01-01" @default.
- W3168996614 modified "2023-10-11" @default.
- W3168996614 title "A learning-based projection method for model order reduction of transport problems" @default.
- W3168996614 cites W1969080915 @default.
- W3168996614 cites W1972863166 @default.
- W3168996614 cites W2005761796 @default.
- W3168996614 cites W2024585678 @default.
- W3168996614 cites W2027335105 @default.
- W3168996614 cites W2031088298 @default.
- W3168996614 cites W2032139645 @default.
- W3168996614 cites W2039150507 @default.
- W3168996614 cites W2042248887 @default.
- W3168996614 cites W2059515224 @default.
- W3168996614 cites W2088689707 @default.
- W3168996614 cites W2112823474 @default.
- W3168996614 cites W2122080931 @default.
- W3168996614 cites W2127674094 @default.
- W3168996614 cites W2134778843 @default.
- W3168996614 cites W2136645762 @default.
- W3168996614 cites W2144954107 @default.
- W3168996614 cites W2582992792 @default.
- W3168996614 cites W2735791542 @default.
- W3168996614 cites W2936544000 @default.
- W3168996614 cites W2950254180 @default.
- W3168996614 cites W2958706811 @default.
- W3168996614 cites W2962706829 @default.
- W3168996614 cites W2963274285 @default.
- W3168996614 cites W2975251257 @default.
- W3168996614 cites W2986795381 @default.
- W3168996614 cites W2999234920 @default.
- W3168996614 cites W3010292040 @default.
- W3168996614 cites W3016478174 @default.
- W3168996614 cites W3028218101 @default.
- W3168996614 cites W3038732277 @default.
- W3168996614 cites W3087844306 @default.
- W3168996614 cites W3100990647 @default.
- W3168996614 cites W3120758146 @default.
- W3168996614 cites W3153519416 @default.
- W3168996614 cites W4285717876 @default.
- W3168996614 doi "https://doi.org/10.1016/j.cam.2022.114560" @default.
- W3168996614 hasPublicationYear "2023" @default.
- W3168996614 type Work @default.
- W3168996614 sameAs 3168996614 @default.
- W3168996614 citedByCount "5" @default.
- W3168996614 countsByYear W31689966142020 @default.
- W3168996614 countsByYear W31689966142023 @default.
- W3168996614 crossrefType "journal-article" @default.
- W3168996614 hasAuthorship W3168996614A5009370806 @default.
- W3168996614 hasAuthorship W3168996614A5015102287 @default.
- W3168996614 hasAuthorship W3168996614A5077120359 @default.
- W3168996614 hasBestOaLocation W31689966141 @default.
- W3168996614 hasConcept C111335779 @default.
- W3168996614 hasConcept C11413529 @default.
- W3168996614 hasConcept C121332964 @default.
- W3168996614 hasConcept C12426560 @default.
- W3168996614 hasConcept C126255220 @default.
- W3168996614 hasConcept C134306372 @default.
- W3168996614 hasConcept C154945302 @default.
- W3168996614 hasConcept C158622935 @default.
- W3168996614 hasConcept C177148314 @default.
- W3168996614 hasConcept C199360897 @default.
- W3168996614 hasConcept C2524010 @default.
- W3168996614 hasConcept C2780801425 @default.
- W3168996614 hasConcept C33923547 @default.
- W3168996614 hasConcept C41008148 @default.
- W3168996614 hasConcept C50644808 @default.
- W3168996614 hasConcept C57493831 @default.
- W3168996614 hasConcept C62520636 @default.
- W3168996614 hasConceptScore W3168996614C111335779 @default.
- W3168996614 hasConceptScore W3168996614C11413529 @default.
- W3168996614 hasConceptScore W3168996614C121332964 @default.
- W3168996614 hasConceptScore W3168996614C12426560 @default.
- W3168996614 hasConceptScore W3168996614C126255220 @default.
- W3168996614 hasConceptScore W3168996614C134306372 @default.
- W3168996614 hasConceptScore W3168996614C154945302 @default.
- W3168996614 hasConceptScore W3168996614C158622935 @default.
- W3168996614 hasConceptScore W3168996614C177148314 @default.
- W3168996614 hasConceptScore W3168996614C199360897 @default.
- W3168996614 hasConceptScore W3168996614C2524010 @default.
- W3168996614 hasConceptScore W3168996614C2780801425 @default.
- W3168996614 hasConceptScore W3168996614C33923547 @default.
- W3168996614 hasConceptScore W3168996614C41008148 @default.
- W3168996614 hasConceptScore W3168996614C50644808 @default.
- W3168996614 hasConceptScore W3168996614C57493831 @default.
- W3168996614 hasConceptScore W3168996614C62520636 @default.
- W3168996614 hasFunder F4320306076 @default.
- W3168996614 hasFunder F4320306164 @default.
- W3168996614 hasLocation W31689966141 @default.
- W3168996614 hasLocation W31689966142 @default.
- W3168996614 hasOpenAccess W3168996614 @default.
- W3168996614 hasPrimaryLocation W31689966141 @default.
- W3168996614 hasRelatedWork W1971753667 @default.
- W3168996614 hasRelatedWork W1977122400 @default.