Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169013499> ?p ?o ?g. }
- W3169013499 endingPage "104317" @default.
- W3169013499 startingPage "104317" @default.
- W3169013499 abstract "Rock-mechanics parameters such as Young’s modulus and Poisson’s ratio are critical to geomechanical analysis and resource exploration. Because these parameters come from laboratory measurement, they present some characteristics such as insufficient samples and contamination of outliers. In this paper, a novel semi-supervised support vector machine soft sensor is devised considering the characteristics of the parameters. First, it takes into account data similarity and selects labeled data set that are most similar to the continuous unlabeled data set at each iteration to improve estimation performance. Meanwhile, an outlier deletion algorithm is developed for a better similarity comparison. After that, a semi-supervised approach is presented for the estimation of rock-mechanics parameters, it can leverage continuous unlabeled data to train the model dynamically. Finally, the verification of our method is carried out on data set from UCI (University of California, Irvine) and several drilling sites. The results demonstrate that our method outperforms eight well-known methods in estimation accuracy." @default.
- W3169013499 created "2021-06-22" @default.
- W3169013499 creator A5013378145 @default.
- W3169013499 creator A5020057271 @default.
- W3169013499 creator A5042783680 @default.
- W3169013499 creator A5046343656 @default.
- W3169013499 creator A5071282606 @default.
- W3169013499 creator A5088032245 @default.
- W3169013499 date "2021-09-01" @default.
- W3169013499 modified "2023-10-16" @default.
- W3169013499 title "Semi-supervised support vector regression based on data similarity and its application to rock-mechanics parameters estimation" @default.
- W3169013499 cites W1968081680 @default.
- W3169013499 cites W1971265424 @default.
- W3169013499 cites W1982707470 @default.
- W3169013499 cites W1985961835 @default.
- W3169013499 cites W1992252410 @default.
- W3169013499 cites W1998397567 @default.
- W3169013499 cites W2014560520 @default.
- W3169013499 cites W2019797838 @default.
- W3169013499 cites W2022011542 @default.
- W3169013499 cites W2039037503 @default.
- W3169013499 cites W2044774029 @default.
- W3169013499 cites W2054979538 @default.
- W3169013499 cites W2057626078 @default.
- W3169013499 cites W2065541868 @default.
- W3169013499 cites W2067395819 @default.
- W3169013499 cites W2081666543 @default.
- W3169013499 cites W2114027834 @default.
- W3169013499 cites W2128899640 @default.
- W3169013499 cites W2161465652 @default.
- W3169013499 cites W2226450201 @default.
- W3169013499 cites W2314386360 @default.
- W3169013499 cites W2330045552 @default.
- W3169013499 cites W2545303840 @default.
- W3169013499 cites W2582425175 @default.
- W3169013499 cites W2605481230 @default.
- W3169013499 cites W2736425480 @default.
- W3169013499 cites W2811410005 @default.
- W3169013499 cites W2844360937 @default.
- W3169013499 cites W2906011998 @default.
- W3169013499 cites W2916048570 @default.
- W3169013499 cites W2942039255 @default.
- W3169013499 cites W2965142139 @default.
- W3169013499 cites W2976234163 @default.
- W3169013499 cites W3009196998 @default.
- W3169013499 cites W3044742337 @default.
- W3169013499 cites W563287015 @default.
- W3169013499 doi "https://doi.org/10.1016/j.engappai.2021.104317" @default.
- W3169013499 hasPublicationYear "2021" @default.
- W3169013499 type Work @default.
- W3169013499 sameAs 3169013499 @default.
- W3169013499 citedByCount "6" @default.
- W3169013499 countsByYear W31690134992022 @default.
- W3169013499 countsByYear W31690134992023 @default.
- W3169013499 crossrefType "journal-article" @default.
- W3169013499 hasAuthorship W3169013499A5013378145 @default.
- W3169013499 hasAuthorship W3169013499A5020057271 @default.
- W3169013499 hasAuthorship W3169013499A5042783680 @default.
- W3169013499 hasAuthorship W3169013499A5046343656 @default.
- W3169013499 hasAuthorship W3169013499A5071282606 @default.
- W3169013499 hasAuthorship W3169013499A5088032245 @default.
- W3169013499 hasConcept C103278499 @default.
- W3169013499 hasConcept C115961682 @default.
- W3169013499 hasConcept C12267149 @default.
- W3169013499 hasConcept C124101348 @default.
- W3169013499 hasConcept C153083717 @default.
- W3169013499 hasConcept C153180895 @default.
- W3169013499 hasConcept C154945302 @default.
- W3169013499 hasConcept C177264268 @default.
- W3169013499 hasConcept C199360897 @default.
- W3169013499 hasConcept C41008148 @default.
- W3169013499 hasConcept C58489278 @default.
- W3169013499 hasConcept C739882 @default.
- W3169013499 hasConcept C79337645 @default.
- W3169013499 hasConceptScore W3169013499C103278499 @default.
- W3169013499 hasConceptScore W3169013499C115961682 @default.
- W3169013499 hasConceptScore W3169013499C12267149 @default.
- W3169013499 hasConceptScore W3169013499C124101348 @default.
- W3169013499 hasConceptScore W3169013499C153083717 @default.
- W3169013499 hasConceptScore W3169013499C153180895 @default.
- W3169013499 hasConceptScore W3169013499C154945302 @default.
- W3169013499 hasConceptScore W3169013499C177264268 @default.
- W3169013499 hasConceptScore W3169013499C199360897 @default.
- W3169013499 hasConceptScore W3169013499C41008148 @default.
- W3169013499 hasConceptScore W3169013499C58489278 @default.
- W3169013499 hasConceptScore W3169013499C739882 @default.
- W3169013499 hasConceptScore W3169013499C79337645 @default.
- W3169013499 hasLocation W31690134991 @default.
- W3169013499 hasOpenAccess W3169013499 @default.
- W3169013499 hasPrimaryLocation W31690134991 @default.
- W3169013499 hasRelatedWork W1967833105 @default.
- W3169013499 hasRelatedWork W2030388591 @default.
- W3169013499 hasRelatedWork W2090668960 @default.
- W3169013499 hasRelatedWork W2117672932 @default.
- W3169013499 hasRelatedWork W2172289703 @default.
- W3169013499 hasRelatedWork W2359185137 @default.
- W3169013499 hasRelatedWork W3152110224 @default.
- W3169013499 hasRelatedWork W4230206970 @default.