Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169047503> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3169047503 endingPage "103324" @default.
- W3169047503 startingPage "103324" @default.
- W3169047503 abstract "Dynamic ice processes can significantly affect various river characteristics such as hydraulics, sediment transport, water quality and morphology. River ice can also impede ship navigation and can induce flood hazard. Study of ice processes is thus crucial for understanding rivers in cold regions. These processes vary according to the four different phases of river ice development: formation, progression, recession and breakup. Monitoring and observation of river ice by remote sensing and close-range photogrammetry have recently attracted significant attention from river ice researchers, and the emergence of remotely piloted aircraft systems with onboard cameras has facilitated safe surveying of river ice. Despite all the developments in this field, fast and accurate data acquisition is still very demanding. One of the challenging tasks in data acquisition from aerial imagery is ice detection and classification. This study presents a novel algorithm called IceMaskNet for automatic river ice detection and characterization from aerial imagery. IceMaskNet utilizes an improved version of the Mask R-CNN, a novel Region-based Convolutional Neural Network with an additional mask. The presented deep learning algorithm is able to detect river ice from aerial imagery and characterize it as belonging to one of six different classes: broken ice, frazil slush, ice cover, open water, border ice, or frazil pan. The developed algorithm is tested using data collected on the Dauphin River, in Manitoba, Canada. Aerial photography from several sections of the river with various slopes and bend scales were used to train IceMaskNet to detect, classify and characterize river ice. The presented algorithm detected and classified river ice with average accuracies of 95% and 91%, respectively." @default.
- W3169047503 created "2021-06-22" @default.
- W3169047503 creator A5044828781 @default.
- W3169047503 creator A5049576764 @default.
- W3169047503 creator A5052995319 @default.
- W3169047503 creator A5053075003 @default.
- W3169047503 date "2021-09-01" @default.
- W3169047503 modified "2023-09-27" @default.
- W3169047503 title "IceMaskNet: River ice detection and characterization using deep learning algorithms applied to aerial photography" @default.
- W3169047503 cites W1970940323 @default.
- W3169047503 cites W2013502396 @default.
- W3169047503 cites W2037767757 @default.
- W3169047503 cites W2098324971 @default.
- W3169047503 cites W2225347233 @default.
- W3169047503 cites W2312200890 @default.
- W3169047503 cites W2322577518 @default.
- W3169047503 cites W2522914027 @default.
- W3169047503 cites W2886002723 @default.
- W3169047503 cites W2889658064 @default.
- W3169047503 cites W2972660084 @default.
- W3169047503 cites W2996120723 @default.
- W3169047503 cites W639708223 @default.
- W3169047503 doi "https://doi.org/10.1016/j.coldregions.2021.103324" @default.
- W3169047503 hasPublicationYear "2021" @default.
- W3169047503 type Work @default.
- W3169047503 sameAs 3169047503 @default.
- W3169047503 citedByCount "5" @default.
- W3169047503 countsByYear W31690475032021 @default.
- W3169047503 countsByYear W31690475032022 @default.
- W3169047503 countsByYear W31690475032023 @default.
- W3169047503 crossrefType "journal-article" @default.
- W3169047503 hasAuthorship W3169047503A5044828781 @default.
- W3169047503 hasAuthorship W3169047503A5049576764 @default.
- W3169047503 hasAuthorship W3169047503A5052995319 @default.
- W3169047503 hasAuthorship W3169047503A5053075003 @default.
- W3169047503 hasConcept C114793014 @default.
- W3169047503 hasConcept C127313418 @default.
- W3169047503 hasConcept C133214962 @default.
- W3169047503 hasConcept C187320778 @default.
- W3169047503 hasConcept C203595873 @default.
- W3169047503 hasConcept C2780323381 @default.
- W3169047503 hasConcept C2816523 @default.
- W3169047503 hasConcept C2987819851 @default.
- W3169047503 hasConcept C62649853 @default.
- W3169047503 hasConcept C76886044 @default.
- W3169047503 hasConceptScore W3169047503C114793014 @default.
- W3169047503 hasConceptScore W3169047503C127313418 @default.
- W3169047503 hasConceptScore W3169047503C133214962 @default.
- W3169047503 hasConceptScore W3169047503C187320778 @default.
- W3169047503 hasConceptScore W3169047503C203595873 @default.
- W3169047503 hasConceptScore W3169047503C2780323381 @default.
- W3169047503 hasConceptScore W3169047503C2816523 @default.
- W3169047503 hasConceptScore W3169047503C2987819851 @default.
- W3169047503 hasConceptScore W3169047503C62649853 @default.
- W3169047503 hasConceptScore W3169047503C76886044 @default.
- W3169047503 hasFunder F4320315155 @default.
- W3169047503 hasFunder F4320334593 @default.
- W3169047503 hasLocation W31690475031 @default.
- W3169047503 hasOpenAccess W3169047503 @default.
- W3169047503 hasPrimaryLocation W31690475031 @default.
- W3169047503 hasRelatedWork W1893242072 @default.
- W3169047503 hasRelatedWork W2116739313 @default.
- W3169047503 hasRelatedWork W2293662726 @default.
- W3169047503 hasRelatedWork W2379062440 @default.
- W3169047503 hasRelatedWork W2464040100 @default.
- W3169047503 hasRelatedWork W2602212790 @default.
- W3169047503 hasRelatedWork W2922896585 @default.
- W3169047503 hasRelatedWork W3081619442 @default.
- W3169047503 hasRelatedWork W3169047503 @default.
- W3169047503 hasRelatedWork W4292062186 @default.
- W3169047503 hasVolume "189" @default.
- W3169047503 isParatext "false" @default.
- W3169047503 isRetracted "false" @default.
- W3169047503 magId "3169047503" @default.
- W3169047503 workType "article" @default.