Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169072018> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3169072018 endingPage "11" @default.
- W3169072018 startingPage "1" @default.
- W3169072018 abstract "In neurosurgical or orthopedic clinics, the differential diagnosis of lower back pain is often time-consuming and costly. This is especially true when there are several candidate diagnoses with similar symptoms that might confuse clinic physicians. Therefore, methods for the efficient differential diagnosis can help physicians to implement the most appropriate treatment and achieve the goal of pain reduction for their patients.In this study, we applied data-mining techniques from artificial intelligence technologies, in order to implement a computer-aided auxiliary differential diagnosis for a herniated intervertebral disc, spondylolithesis, and spinal stenosis. We collected questionnaires from 361 patients and analyzed the resulting data by using a linear discriminant analysis, clustering, and artificial neural network techniques to construct a related classification model and to compare the accuracy and implementation efficiency of the different methods.Our results indicate that a linear discriminant analysis has obvious advantages for classification and diagnosis, in terms of accuracy.We concluded that the judgment results from artificial intelligence can be used as a reference for medical personnel in their clinical diagnoses. Our method is expected to facilitate the early detection of symptoms and early treatment, so as to reduce the social resource costs and the huge burden of medical expenses, and to increase the quality of medical care." @default.
- W3169072018 created "2021-06-22" @default.
- W3169072018 creator A5042112034 @default.
- W3169072018 creator A5043259697 @default.
- W3169072018 creator A5082832717 @default.
- W3169072018 date "2021-06-11" @default.
- W3169072018 modified "2023-09-27" @default.
- W3169072018 title "Comparison of different predicting models to assist the diagnosis of spinal lesions" @default.
- W3169072018 cites W2001157517 @default.
- W3169072018 cites W2019725541 @default.
- W3169072018 cites W2023363945 @default.
- W3169072018 cites W2096644403 @default.
- W3169072018 cites W2147314892 @default.
- W3169072018 cites W2149348722 @default.
- W3169072018 cites W2155181130 @default.
- W3169072018 cites W2340052393 @default.
- W3169072018 cites W2417400399 @default.
- W3169072018 cites W2581949365 @default.
- W3169072018 cites W2587428485 @default.
- W3169072018 cites W2595323993 @default.
- W3169072018 cites W2736217281 @default.
- W3169072018 cites W2787831277 @default.
- W3169072018 cites W2924218705 @default.
- W3169072018 cites W2990067963 @default.
- W3169072018 cites W3016748229 @default.
- W3169072018 cites W3046694246 @default.
- W3169072018 cites W3047102043 @default.
- W3169072018 cites W3083248079 @default.
- W3169072018 cites W3088375768 @default.
- W3169072018 cites W3157914004 @default.
- W3169072018 doi "https://doi.org/10.1080/17538157.2021.1939355" @default.
- W3169072018 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34114923" @default.
- W3169072018 hasPublicationYear "2021" @default.
- W3169072018 type Work @default.
- W3169072018 sameAs 3169072018 @default.
- W3169072018 citedByCount "2" @default.
- W3169072018 countsByYear W31690720182022 @default.
- W3169072018 crossrefType "journal-article" @default.
- W3169072018 hasAuthorship W3169072018A5042112034 @default.
- W3169072018 hasAuthorship W3169072018A5043259697 @default.
- W3169072018 hasAuthorship W3169072018A5082832717 @default.
- W3169072018 hasBestOaLocation W31690720181 @default.
- W3169072018 hasConcept C119857082 @default.
- W3169072018 hasConcept C124101348 @default.
- W3169072018 hasConcept C126838900 @default.
- W3169072018 hasConcept C142724271 @default.
- W3169072018 hasConcept C154945302 @default.
- W3169072018 hasConcept C199360897 @default.
- W3169072018 hasConcept C2780801072 @default.
- W3169072018 hasConcept C2780801425 @default.
- W3169072018 hasConcept C41008148 @default.
- W3169072018 hasConcept C50644808 @default.
- W3169072018 hasConcept C534262118 @default.
- W3169072018 hasConcept C69738355 @default.
- W3169072018 hasConcept C71924100 @default.
- W3169072018 hasConcept C73555534 @default.
- W3169072018 hasConceptScore W3169072018C119857082 @default.
- W3169072018 hasConceptScore W3169072018C124101348 @default.
- W3169072018 hasConceptScore W3169072018C126838900 @default.
- W3169072018 hasConceptScore W3169072018C142724271 @default.
- W3169072018 hasConceptScore W3169072018C154945302 @default.
- W3169072018 hasConceptScore W3169072018C199360897 @default.
- W3169072018 hasConceptScore W3169072018C2780801072 @default.
- W3169072018 hasConceptScore W3169072018C2780801425 @default.
- W3169072018 hasConceptScore W3169072018C41008148 @default.
- W3169072018 hasConceptScore W3169072018C50644808 @default.
- W3169072018 hasConceptScore W3169072018C534262118 @default.
- W3169072018 hasConceptScore W3169072018C69738355 @default.
- W3169072018 hasConceptScore W3169072018C71924100 @default.
- W3169072018 hasConceptScore W3169072018C73555534 @default.
- W3169072018 hasLocation W31690720181 @default.
- W3169072018 hasLocation W31690720182 @default.
- W3169072018 hasOpenAccess W3169072018 @default.
- W3169072018 hasPrimaryLocation W31690720181 @default.
- W3169072018 hasRelatedWork W1470425429 @default.
- W3169072018 hasRelatedWork W2779764073 @default.
- W3169072018 hasRelatedWork W2981850339 @default.
- W3169072018 hasRelatedWork W3109918303 @default.
- W3169072018 hasRelatedWork W3171670682 @default.
- W3169072018 hasRelatedWork W4200387743 @default.
- W3169072018 hasRelatedWork W4221088574 @default.
- W3169072018 hasRelatedWork W4309637067 @default.
- W3169072018 hasRelatedWork W4316082230 @default.
- W3169072018 hasRelatedWork W1629725936 @default.
- W3169072018 isParatext "false" @default.
- W3169072018 isRetracted "false" @default.
- W3169072018 magId "3169072018" @default.
- W3169072018 workType "article" @default.