Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169092018> ?p ?o ?g. }
- W3169092018 endingPage "5" @default.
- W3169092018 startingPage "1" @default.
- W3169092018 abstract "Introduction. Rate pressure product (the product of heart rate and systolic blood pressure) is a measure of cardiac workload. Resting rate pressure product (rRPP) varies from one individual to the next, but its biochemical/cellular phenotype remains unknown. This study determined the degree to which an individual’s biochemical/cellular profile as characterized by a standard blood panel is predictive of rRPP, as well the importance of each blood biomarker in this prediction. Methods. We included data from 55,730 participants in this study with complete rRPP measurements and concurrently collected blood panel information from the Health Management Centre at the Affiliated Hospital of Hangzhou Normal University. We used the XGBoost machine learning algorithm to train a tree-based model and then assessed its accuracy on an independent portion of the dataset and then compared its performance against a standard linear regression technique. We further determined the predictive importance of each feature in the blood panel. Results. We found a fair positive correlation (Pearson <math xmlns=http://www.w3.org/1998/Math/MathML id=M1> <mi>r</mi> </math> ) of 0.377 (95% CI: 0.375-0.378) between observed rRPP and rRPP predicted from blood biomarkers. By comparison, the performance for standard linear regression was 0.352 (95% CI: 0.351-0.354). The top three predictors in this model were glucose concentration, total protein concentration, and neutrophil count. Discussion/Conclusion. Blood biomarkers predict resting RPP when modeled in combination with one another; such models are valuable for studying the complex interrelations between resting cardiac workload and one’s biochemical/cellular phenotype." @default.
- W3169092018 created "2021-06-22" @default.
- W3169092018 creator A5002022412 @default.
- W3169092018 creator A5010742292 @default.
- W3169092018 creator A5037738256 @default.
- W3169092018 creator A5048047045 @default.
- W3169092018 creator A5064610209 @default.
- W3169092018 creator A5066892657 @default.
- W3169092018 creator A5067537086 @default.
- W3169092018 creator A5067865780 @default.
- W3169092018 creator A5074715326 @default.
- W3169092018 creator A5079855796 @default.
- W3169092018 date "2021-06-01" @default.
- W3169092018 modified "2023-09-23" @default.
- W3169092018 title "Blood Biomarkers Predict Cardiac Workload Using Machine Learning" @default.
- W3169092018 cites W1484404077 @default.
- W3169092018 cites W1514446981 @default.
- W3169092018 cites W1558608907 @default.
- W3169092018 cites W1816755143 @default.
- W3169092018 cites W1972063989 @default.
- W3169092018 cites W1982996105 @default.
- W3169092018 cites W2012514631 @default.
- W3169092018 cites W2014873301 @default.
- W3169092018 cites W2038051506 @default.
- W3169092018 cites W2044594443 @default.
- W3169092018 cites W2051875850 @default.
- W3169092018 cites W2085182570 @default.
- W3169092018 cites W2099812928 @default.
- W3169092018 cites W2133947263 @default.
- W3169092018 cites W2135695572 @default.
- W3169092018 cites W2142433177 @default.
- W3169092018 cites W2170398455 @default.
- W3169092018 cites W2270287237 @default.
- W3169092018 cites W2803416123 @default.
- W3169092018 cites W2936573766 @default.
- W3169092018 cites W2311863050 @default.
- W3169092018 doi "https://doi.org/10.1155/2021/6172815" @default.
- W3169092018 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8187049" @default.
- W3169092018 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34159195" @default.
- W3169092018 hasPublicationYear "2021" @default.
- W3169092018 type Work @default.
- W3169092018 sameAs 3169092018 @default.
- W3169092018 citedByCount "1" @default.
- W3169092018 countsByYear W31690920182023 @default.
- W3169092018 crossrefType "journal-article" @default.
- W3169092018 hasAuthorship W3169092018A5002022412 @default.
- W3169092018 hasAuthorship W3169092018A5010742292 @default.
- W3169092018 hasAuthorship W3169092018A5037738256 @default.
- W3169092018 hasAuthorship W3169092018A5048047045 @default.
- W3169092018 hasAuthorship W3169092018A5064610209 @default.
- W3169092018 hasAuthorship W3169092018A5066892657 @default.
- W3169092018 hasAuthorship W3169092018A5067537086 @default.
- W3169092018 hasAuthorship W3169092018A5067865780 @default.
- W3169092018 hasAuthorship W3169092018A5074715326 @default.
- W3169092018 hasAuthorship W3169092018A5079855796 @default.
- W3169092018 hasBestOaLocation W31690920181 @default.
- W3169092018 hasConcept C105795698 @default.
- W3169092018 hasConcept C111919701 @default.
- W3169092018 hasConcept C117220453 @default.
- W3169092018 hasConcept C126322002 @default.
- W3169092018 hasConcept C152877465 @default.
- W3169092018 hasConcept C164705383 @default.
- W3169092018 hasConcept C2524010 @default.
- W3169092018 hasConcept C2777953023 @default.
- W3169092018 hasConcept C2778476105 @default.
- W3169092018 hasConcept C2781197716 @default.
- W3169092018 hasConcept C33923547 @default.
- W3169092018 hasConcept C41008148 @default.
- W3169092018 hasConcept C48921125 @default.
- W3169092018 hasConcept C55493867 @default.
- W3169092018 hasConcept C71924100 @default.
- W3169092018 hasConcept C84393581 @default.
- W3169092018 hasConcept C86803240 @default.
- W3169092018 hasConceptScore W3169092018C105795698 @default.
- W3169092018 hasConceptScore W3169092018C111919701 @default.
- W3169092018 hasConceptScore W3169092018C117220453 @default.
- W3169092018 hasConceptScore W3169092018C126322002 @default.
- W3169092018 hasConceptScore W3169092018C152877465 @default.
- W3169092018 hasConceptScore W3169092018C164705383 @default.
- W3169092018 hasConceptScore W3169092018C2524010 @default.
- W3169092018 hasConceptScore W3169092018C2777953023 @default.
- W3169092018 hasConceptScore W3169092018C2778476105 @default.
- W3169092018 hasConceptScore W3169092018C2781197716 @default.
- W3169092018 hasConceptScore W3169092018C33923547 @default.
- W3169092018 hasConceptScore W3169092018C41008148 @default.
- W3169092018 hasConceptScore W3169092018C48921125 @default.
- W3169092018 hasConceptScore W3169092018C55493867 @default.
- W3169092018 hasConceptScore W3169092018C71924100 @default.
- W3169092018 hasConceptScore W3169092018C84393581 @default.
- W3169092018 hasConceptScore W3169092018C86803240 @default.
- W3169092018 hasLocation W31690920181 @default.
- W3169092018 hasLocation W31690920182 @default.
- W3169092018 hasLocation W31690920183 @default.
- W3169092018 hasOpenAccess W3169092018 @default.
- W3169092018 hasPrimaryLocation W31690920181 @default.
- W3169092018 hasRelatedWork W1489210197 @default.
- W3169092018 hasRelatedWork W2038677418 @default.
- W3169092018 hasRelatedWork W2106328306 @default.