Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169117842> ?p ?o ?g. }
- W3169117842 endingPage "18999" @default.
- W3169117842 startingPage "18990" @default.
- W3169117842 abstract "This paper presents the use of a radial basis function artificial neural network to estimate sensor readings exploring the analytical redundancy via auto-association. However, in order to guarantee optimal performance of the network, the training and optimization processes have been modified. In the conventional training algorithm, even if a stop criterion, such as summed squared error, is reached, one or more of the individual performance metrics, including: i) accuracy; ii) robustness; iii) spillover and iv) filtering of the neural network, may not be satisfactory while validating sensor measurements. Essentially, the proposed modification in the training algorithm is based on seeking to ensure that one or more of the metrics are met. This paper describes the proposed algorithm including all of its mathematical foundation. Afterward, a data set of a water injection pump for an oil and gas processing unit was used to train the RBF network using the conventional and the modified algorithm, and the performance of each was evaluated. Furthermore, the AAKR model is applied to the same dataset as a quality reference parameter. Finally, a comparison analysis of the developed models is presented for each of the performance metrics, as well as for overall effectiveness, demonstrating that the main advantage of the proposed approach is to obtain the estimation results equivalent or superior to the AAKR with shorter runtime and the disadvantage of having higher complexity during the model training." @default.
- W3169117842 created "2021-06-22" @default.
- W3169117842 creator A5006101738 @default.
- W3169117842 creator A5013094372 @default.
- W3169117842 creator A5026395860 @default.
- W3169117842 creator A5043766318 @default.
- W3169117842 creator A5048312548 @default.
- W3169117842 creator A5058656720 @default.
- W3169117842 creator A5062113615 @default.
- W3169117842 creator A5071825896 @default.
- W3169117842 date "2021-09-01" @default.
- W3169117842 modified "2023-10-18" @default.
- W3169117842 title "A Modified Algorithm for Training and Optimize RBF Neural Networks Applied to Sensor Measurements Validation" @default.
- W3169117842 cites W1542619214 @default.
- W3169117842 cites W1639372303 @default.
- W3169117842 cites W1884075051 @default.
- W3169117842 cites W1975476596 @default.
- W3169117842 cites W1981240965 @default.
- W3169117842 cites W1998774964 @default.
- W3169117842 cites W2042390921 @default.
- W3169117842 cites W2060962037 @default.
- W3169117842 cites W2093294161 @default.
- W3169117842 cites W2094939857 @default.
- W3169117842 cites W2100116885 @default.
- W3169117842 cites W2116774121 @default.
- W3169117842 cites W2275031392 @default.
- W3169117842 cites W2321074348 @default.
- W3169117842 cites W2547617640 @default.
- W3169117842 cites W2743340515 @default.
- W3169117842 cites W2766057469 @default.
- W3169117842 cites W2782960525 @default.
- W3169117842 cites W2895045703 @default.
- W3169117842 cites W2908131432 @default.
- W3169117842 cites W3022757405 @default.
- W3169117842 doi "https://doi.org/10.1109/jsen.2021.3087107" @default.
- W3169117842 hasPublicationYear "2021" @default.
- W3169117842 type Work @default.
- W3169117842 sameAs 3169117842 @default.
- W3169117842 citedByCount "4" @default.
- W3169117842 countsByYear W31691178422022 @default.
- W3169117842 countsByYear W31691178422023 @default.
- W3169117842 crossrefType "journal-article" @default.
- W3169117842 hasAuthorship W3169117842A5006101738 @default.
- W3169117842 hasAuthorship W3169117842A5013094372 @default.
- W3169117842 hasAuthorship W3169117842A5026395860 @default.
- W3169117842 hasAuthorship W3169117842A5043766318 @default.
- W3169117842 hasAuthorship W3169117842A5048312548 @default.
- W3169117842 hasAuthorship W3169117842A5058656720 @default.
- W3169117842 hasAuthorship W3169117842A5062113615 @default.
- W3169117842 hasAuthorship W3169117842A5071825896 @default.
- W3169117842 hasConcept C104317684 @default.
- W3169117842 hasConcept C105795698 @default.
- W3169117842 hasConcept C111919701 @default.
- W3169117842 hasConcept C11413529 @default.
- W3169117842 hasConcept C124101348 @default.
- W3169117842 hasConcept C139945424 @default.
- W3169117842 hasConcept C152124472 @default.
- W3169117842 hasConcept C154945302 @default.
- W3169117842 hasConcept C182016430 @default.
- W3169117842 hasConcept C185592680 @default.
- W3169117842 hasConcept C33923547 @default.
- W3169117842 hasConcept C41008148 @default.
- W3169117842 hasConcept C50644808 @default.
- W3169117842 hasConcept C55493867 @default.
- W3169117842 hasConcept C63479239 @default.
- W3169117842 hasConcept C98856871 @default.
- W3169117842 hasConceptScore W3169117842C104317684 @default.
- W3169117842 hasConceptScore W3169117842C105795698 @default.
- W3169117842 hasConceptScore W3169117842C111919701 @default.
- W3169117842 hasConceptScore W3169117842C11413529 @default.
- W3169117842 hasConceptScore W3169117842C124101348 @default.
- W3169117842 hasConceptScore W3169117842C139945424 @default.
- W3169117842 hasConceptScore W3169117842C152124472 @default.
- W3169117842 hasConceptScore W3169117842C154945302 @default.
- W3169117842 hasConceptScore W3169117842C182016430 @default.
- W3169117842 hasConceptScore W3169117842C185592680 @default.
- W3169117842 hasConceptScore W3169117842C33923547 @default.
- W3169117842 hasConceptScore W3169117842C41008148 @default.
- W3169117842 hasConceptScore W3169117842C50644808 @default.
- W3169117842 hasConceptScore W3169117842C55493867 @default.
- W3169117842 hasConceptScore W3169117842C63479239 @default.
- W3169117842 hasConceptScore W3169117842C98856871 @default.
- W3169117842 hasFunder F4320321091 @default.
- W3169117842 hasIssue "17" @default.
- W3169117842 hasLocation W31691178421 @default.
- W3169117842 hasOpenAccess W3169117842 @default.
- W3169117842 hasPrimaryLocation W31691178421 @default.
- W3169117842 hasRelatedWork W111828877 @default.
- W3169117842 hasRelatedWork W1549106865 @default.
- W3169117842 hasRelatedWork W2004696800 @default.
- W3169117842 hasRelatedWork W2098610653 @default.
- W3169117842 hasRelatedWork W2161833043 @default.
- W3169117842 hasRelatedWork W2393731464 @default.
- W3169117842 hasRelatedWork W2995549430 @default.
- W3169117842 hasRelatedWork W1930618075 @default.
- W3169117842 hasRelatedWork W2182642049 @default.
- W3169117842 hasRelatedWork W2303860851 @default.
- W3169117842 hasVolume "21" @default.