Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169132743> ?p ?o ?g. }
- W3169132743 endingPage "28649" @default.
- W3169132743 startingPage "28639" @default.
- W3169132743 abstract "Self-assembly of block copolymers (BCPs) is an alternative patterning technique that promises high resolution and density multiplication with lower costs. The defectivity of the resulting nanopatterns remains too high for many applications in microelectronics and is exacerbated by small variations of processing parameters, such as film thickness, and fluctuations of solvent vapor pressure and temperature, among others. In this work, a solvent vapor annealing (SVA) flow-controlled system is combined with design of experiments (DOE) and machine learning (ML) approaches. The SVA flow-controlled system enables precise optimization of the conditions of self-assembly of the high Flory–Huggins interaction parameter (χ) hexagonal dot-array forming BCP, poly(styrene-b-dimethylsiloxane) (PS-b-PDMS). The defects within the resulting patterns at various length scales are then characterized and quantified. The results show that the defectivity of the resulting nanopatterned surfaces is highly dependent upon very small variations of the initial film thicknesses of the BCP, as well as the degree of swelling under the SVA conditions. These parameters also significantly contribute to the quality of the resulting pattern with respect to grain coarsening, as well as the formation of different macroscale phases (single and double layers and wetting layers). The results of qualitative and quantitative defect analyses are then compiled into a single figure of merit (FOM) and are mapped across the experimental parameter space using ML approaches, which enable the identification of the narrow region of optimum conditions for SVA for a given BCP. The result of these analyses is a faster and less resource intensive route toward the production of low-defectivity BCP dot arrays via rational determination of the ideal combination of processing factors. The DOE and machine learning-enabled approach is generalizable to the scale-up of self-assembly-based nanopatterning for applications in electronic microfabrication." @default.
- W3169132743 created "2021-06-22" @default.
- W3169132743 creator A5005092754 @default.
- W3169132743 creator A5012967837 @default.
- W3169132743 creator A5015973692 @default.
- W3169132743 creator A5032580359 @default.
- W3169132743 creator A5048070823 @default.
- W3169132743 creator A5054755622 @default.
- W3169132743 date "2021-06-08" @default.
- W3169132743 modified "2023-10-17" @default.
- W3169132743 title "Solvent Vapor Annealing, Defect Analysis, and Optimization of Self-Assembly of Block Copolymers Using Machine Learning Approaches" @default.
- W3169132743 cites W1216830856 @default.
- W3169132743 cites W1880455196 @default.
- W3169132743 cites W1970366093 @default.
- W3169132743 cites W1973965874 @default.
- W3169132743 cites W1976055919 @default.
- W3169132743 cites W1977013739 @default.
- W3169132743 cites W1999865376 @default.
- W3169132743 cites W2008013444 @default.
- W3169132743 cites W2022315563 @default.
- W3169132743 cites W2034501059 @default.
- W3169132743 cites W2040435757 @default.
- W3169132743 cites W2040997259 @default.
- W3169132743 cites W2045469756 @default.
- W3169132743 cites W2058879111 @default.
- W3169132743 cites W2060220696 @default.
- W3169132743 cites W2060337814 @default.
- W3169132743 cites W2070887631 @default.
- W3169132743 cites W2081603701 @default.
- W3169132743 cites W2089930307 @default.
- W3169132743 cites W2092204065 @default.
- W3169132743 cites W2099034860 @default.
- W3169132743 cites W2106832984 @default.
- W3169132743 cites W2122166258 @default.
- W3169132743 cites W2133059825 @default.
- W3169132743 cites W2155707569 @default.
- W3169132743 cites W2158652450 @default.
- W3169132743 cites W2190752743 @default.
- W3169132743 cites W2302485339 @default.
- W3169132743 cites W2318559273 @default.
- W3169132743 cites W2319442899 @default.
- W3169132743 cites W2324609407 @default.
- W3169132743 cites W2328357150 @default.
- W3169132743 cites W2338836529 @default.
- W3169132743 cites W2346274414 @default.
- W3169132743 cites W2416470717 @default.
- W3169132743 cites W2481008554 @default.
- W3169132743 cites W2483861922 @default.
- W3169132743 cites W2511594167 @default.
- W3169132743 cites W2589635804 @default.
- W3169132743 cites W2599295793 @default.
- W3169132743 cites W2602238537 @default.
- W3169132743 cites W2604105524 @default.
- W3169132743 cites W2605150961 @default.
- W3169132743 cites W2612836903 @default.
- W3169132743 cites W2738138261 @default.
- W3169132743 cites W2794858704 @default.
- W3169132743 cites W2796457311 @default.
- W3169132743 cites W2801296210 @default.
- W3169132743 cites W2803372187 @default.
- W3169132743 cites W2805322933 @default.
- W3169132743 cites W2808162391 @default.
- W3169132743 cites W2884195068 @default.
- W3169132743 cites W2884258597 @default.
- W3169132743 cites W2888647089 @default.
- W3169132743 cites W2891232170 @default.
- W3169132743 cites W2892139492 @default.
- W3169132743 cites W2896522109 @default.
- W3169132743 cites W2902118389 @default.
- W3169132743 cites W2904311830 @default.
- W3169132743 cites W2923741039 @default.
- W3169132743 cites W2962876868 @default.
- W3169132743 cites W2971781728 @default.
- W3169132743 cites W2985930782 @default.
- W3169132743 cites W2990191610 @default.
- W3169132743 cites W3010877385 @default.
- W3169132743 cites W3017720018 @default.
- W3169132743 cites W3020887612 @default.
- W3169132743 cites W3084260642 @default.
- W3169132743 cites W3100903608 @default.
- W3169132743 cites W3106730442 @default.
- W3169132743 cites W3110147287 @default.
- W3169132743 cites W3123312987 @default.
- W3169132743 cites W3133430102 @default.
- W3169132743 doi "https://doi.org/10.1021/acsami.1c05056" @default.
- W3169132743 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34100583" @default.
- W3169132743 hasPublicationYear "2021" @default.
- W3169132743 type Work @default.
- W3169132743 sameAs 3169132743 @default.
- W3169132743 citedByCount "11" @default.
- W3169132743 countsByYear W31691327432021 @default.
- W3169132743 countsByYear W31691327432022 @default.
- W3169132743 countsByYear W31691327432023 @default.
- W3169132743 crossrefType "journal-article" @default.
- W3169132743 hasAuthorship W3169132743A5005092754 @default.
- W3169132743 hasAuthorship W3169132743A5012967837 @default.
- W3169132743 hasAuthorship W3169132743A5015973692 @default.
- W3169132743 hasAuthorship W3169132743A5032580359 @default.