Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169141574> ?p ?o ?g. }
- W3169141574 endingPage "12" @default.
- W3169141574 startingPage "1" @default.
- W3169141574 abstract "Deep learning has enjoyed tremendous success in a variety of applications but its application to quantile regressions remains scarce. A major advantage of the deep learning approach is its flexibility to model complex data in a more parsimonious way than nonparametric smoothing methods. However, while deep learning brought breakthroughs in prediction, it often lacks interpretability due to the black-box nature of multilayer structure with millions of parameters, hence it is not well suited for statistical inference. In this paper, we leverage the advantages of deep learning to apply it to quantile regression where the goal to produce interpretable results and perform statistical inference. We achieve this by adopting a semiparametric approach based on the partially linear quantile regression model, where covariates of primary interest for statistical inference are modelled linearly and all other covariates are modelled nonparametrically by means of a deep neural network. In addition to the new methodology, we provide theoretical justification for the proposed model by establishing the root-$n$ consistency and asymptotically normality of the parametric coefficient estimator and the minimax optimal convergence rate of the neural nonparametric function estimator. Across several simulated and real data examples, our proposed model empirically produces superior estimates and more accurate predictions than various alternative approaches." @default.
- W3169141574 created "2021-06-22" @default.
- W3169141574 creator A5044866804 @default.
- W3169141574 creator A5062656684 @default.
- W3169141574 date "2023-06-02" @default.
- W3169141574 modified "2023-09-23" @default.
- W3169141574 title "Neural Networks for Partially Linear Quantile Regression" @default.
- W3169141574 cites W1967957642 @default.
- W3169141574 cites W1976790077 @default.
- W3169141574 cites W1978930294 @default.
- W3169141574 cites W1980128351 @default.
- W3169141574 cites W1983306107 @default.
- W3169141574 cites W1986134211 @default.
- W3169141574 cites W1994616650 @default.
- W3169141574 cites W2010353172 @default.
- W3169141574 cites W2013598291 @default.
- W3169141574 cites W2018851263 @default.
- W3169141574 cites W2021091247 @default.
- W3169141574 cites W2023345279 @default.
- W3169141574 cites W2027085238 @default.
- W3169141574 cites W2028828492 @default.
- W3169141574 cites W2040996096 @default.
- W3169141574 cites W2044449183 @default.
- W3169141574 cites W2046024388 @default.
- W3169141574 cites W2047544035 @default.
- W3169141574 cites W2048773948 @default.
- W3169141574 cites W2065274576 @default.
- W3169141574 cites W2083565404 @default.
- W3169141574 cites W2086532552 @default.
- W3169141574 cites W2096904991 @default.
- W3169141574 cites W2099064353 @default.
- W3169141574 cites W2103496339 @default.
- W3169141574 cites W2111388513 @default.
- W3169141574 cites W2115585728 @default.
- W3169141574 cites W2133596638 @default.
- W3169141574 cites W2136175429 @default.
- W3169141574 cites W2137723957 @default.
- W3169141574 cites W2137983211 @default.
- W3169141574 cites W2160276648 @default.
- W3169141574 cites W2187676596 @default.
- W3169141574 cites W2191119664 @default.
- W3169141574 cites W2334612886 @default.
- W3169141574 cites W2528305538 @default.
- W3169141574 cites W2583860259 @default.
- W3169141574 cites W2586702902 @default.
- W3169141574 cites W2759516619 @default.
- W3169141574 cites W2793415686 @default.
- W3169141574 cites W2883069881 @default.
- W3169141574 cites W2886629814 @default.
- W3169141574 cites W2945976633 @default.
- W3169141574 cites W2946130033 @default.
- W3169141574 cites W2946302218 @default.
- W3169141574 cites W2964133571 @default.
- W3169141574 cites W3034393265 @default.
- W3169141574 cites W3104631984 @default.
- W3169141574 cites W3124895869 @default.
- W3169141574 cites W3125699207 @default.
- W3169141574 cites W3134199779 @default.
- W3169141574 cites W3135386821 @default.
- W3169141574 cites W3155284954 @default.
- W3169141574 cites W3204386957 @default.
- W3169141574 cites W4226192247 @default.
- W3169141574 cites W4241653265 @default.
- W3169141574 cites W4249716558 @default.
- W3169141574 doi "https://doi.org/10.1080/07350015.2023.2208183" @default.
- W3169141574 hasPublicationYear "2023" @default.
- W3169141574 type Work @default.
- W3169141574 sameAs 3169141574 @default.
- W3169141574 citedByCount "0" @default.
- W3169141574 crossrefType "journal-article" @default.
- W3169141574 hasAuthorship W3169141574A5044866804 @default.
- W3169141574 hasAuthorship W3169141574A5062656684 @default.
- W3169141574 hasBestOaLocation W31691415742 @default.
- W3169141574 hasConcept C102366305 @default.
- W3169141574 hasConcept C105795698 @default.
- W3169141574 hasConcept C118671147 @default.
- W3169141574 hasConcept C119857082 @default.
- W3169141574 hasConcept C134261354 @default.
- W3169141574 hasConcept C149782125 @default.
- W3169141574 hasConcept C153083717 @default.
- W3169141574 hasConcept C154945302 @default.
- W3169141574 hasConcept C163175372 @default.
- W3169141574 hasConcept C185429906 @default.
- W3169141574 hasConcept C19539793 @default.
- W3169141574 hasConcept C2776214188 @default.
- W3169141574 hasConcept C2781067378 @default.
- W3169141574 hasConcept C33923547 @default.
- W3169141574 hasConcept C3770464 @default.
- W3169141574 hasConcept C41008148 @default.
- W3169141574 hasConcept C50644808 @default.
- W3169141574 hasConcept C63817138 @default.
- W3169141574 hasConcept C74127309 @default.
- W3169141574 hasConceptScore W3169141574C102366305 @default.
- W3169141574 hasConceptScore W3169141574C105795698 @default.
- W3169141574 hasConceptScore W3169141574C118671147 @default.
- W3169141574 hasConceptScore W3169141574C119857082 @default.
- W3169141574 hasConceptScore W3169141574C134261354 @default.
- W3169141574 hasConceptScore W3169141574C149782125 @default.