Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169183224> ?p ?o ?g. }
- W3169183224 endingPage "115265" @default.
- W3169183224 startingPage "115265" @default.
- W3169183224 abstract "Mining the emotions in the text related to mental health-care oriented is a challenging aspect, especially dealing with a long-text sequence of data. The extraction of emotions depends upon the various psychological depression factors like negative and ambiguity. Identifying these factors is the most perplexing task for every psychiatrist to treat their patients. Our study includes the deep learning (DL) models with global vector representations (GloVe) embeddings to capture the text sequence of data. We proposed a model multi-head attention with bidirectional long short-term memory and convolutional neural network (MHA-BCNN) is a pre-eminent mechanism that outperforms better than past research works for capturing the negative text-based emotions. In this paper, by using DL extracted the various negative mental-health emotions like addiction, anxiety, depression, insomnia, stress, and obsessive cleaning disorder (OCD). By using the GloVe embeddings and handled the ambiguity factors like multiple emotion words in a certain sequence. As we proposed a vigorous appliance in our research to capture and hoard the long-term dependencies. We extracted the questions related to mental health issues were posted by the patients in an online mental healthcare-oriented platform. We efficaciously handled both negative and ambiguity factors at the document level. Our suggested exemplary MHA-BCNN surmounts various aspects from preceding research works and ensued preeminent performance. Experimental results show that our proposed framework MHA-BCNN outperformed than the erstwhile research works." @default.
- W3169183224 created "2021-06-22" @default.
- W3169183224 creator A5010440061 @default.
- W3169183224 creator A5063493064 @default.
- W3169183224 date "2021-11-01" @default.
- W3169183224 modified "2023-10-01" @default.
- W3169183224 title "Negative emotions detection on online mental-health related patients texts using the deep learning with MHA-BCNN model" @default.
- W3169183224 cites W1871719274 @default.
- W3169183224 cites W1902237438 @default.
- W3169183224 cites W1986273094 @default.
- W3169183224 cites W2034090215 @default.
- W3169183224 cites W2056290938 @default.
- W3169183224 cites W2056695536 @default.
- W3169183224 cites W2101129167 @default.
- W3169183224 cites W2170505850 @default.
- W3169183224 cites W2250539671 @default.
- W3169183224 cites W2558941750 @default.
- W3169183224 cites W2606089314 @default.
- W3169183224 cites W2729451077 @default.
- W3169183224 cites W2732463225 @default.
- W3169183224 cites W2789426727 @default.
- W3169183224 cites W2886444838 @default.
- W3169183224 cites W2889149926 @default.
- W3169183224 cites W2890623737 @default.
- W3169183224 cites W2899676184 @default.
- W3169183224 cites W2900120976 @default.
- W3169183224 cites W2901969942 @default.
- W3169183224 cites W2916145857 @default.
- W3169183224 cites W2918378401 @default.
- W3169183224 cites W2921024999 @default.
- W3169183224 cites W2960909015 @default.
- W3169183224 cites W2962933419 @default.
- W3169183224 cites W2967729586 @default.
- W3169183224 cites W2989069255 @default.
- W3169183224 cites W2993821971 @default.
- W3169183224 cites W2999168082 @default.
- W3169183224 cites W3000577085 @default.
- W3169183224 cites W3001476626 @default.
- W3169183224 cites W3004245552 @default.
- W3169183224 cites W3014803340 @default.
- W3169183224 cites W3015642072 @default.
- W3169183224 cites W3016921356 @default.
- W3169183224 cites W3017952061 @default.
- W3169183224 cites W3018419633 @default.
- W3169183224 cites W3025174891 @default.
- W3169183224 cites W3025283630 @default.
- W3169183224 cites W3027902656 @default.
- W3169183224 cites W3033213562 @default.
- W3169183224 cites W3035771434 @default.
- W3169183224 cites W3036568251 @default.
- W3169183224 cites W3039458202 @default.
- W3169183224 cites W3044892747 @default.
- W3169183224 cites W3094303728 @default.
- W3169183224 cites W3114543730 @default.
- W3169183224 cites W3125631070 @default.
- W3169183224 doi "https://doi.org/10.1016/j.eswa.2021.115265" @default.
- W3169183224 hasPublicationYear "2021" @default.
- W3169183224 type Work @default.
- W3169183224 sameAs 3169183224 @default.
- W3169183224 citedByCount "20" @default.
- W3169183224 countsByYear W31691832242021 @default.
- W3169183224 countsByYear W31691832242022 @default.
- W3169183224 countsByYear W31691832242023 @default.
- W3169183224 crossrefType "journal-article" @default.
- W3169183224 hasAuthorship W3169183224A5010440061 @default.
- W3169183224 hasAuthorship W3169183224A5063493064 @default.
- W3169183224 hasConcept C118552586 @default.
- W3169183224 hasConcept C134362201 @default.
- W3169183224 hasConcept C154945302 @default.
- W3169183224 hasConcept C15744967 @default.
- W3169183224 hasConcept C180747234 @default.
- W3169183224 hasConcept C199360897 @default.
- W3169183224 hasConcept C2778112365 @default.
- W3169183224 hasConcept C2780522230 @default.
- W3169183224 hasConcept C41008148 @default.
- W3169183224 hasConcept C54355233 @default.
- W3169183224 hasConcept C558461103 @default.
- W3169183224 hasConcept C86803240 @default.
- W3169183224 hasConceptScore W3169183224C118552586 @default.
- W3169183224 hasConceptScore W3169183224C134362201 @default.
- W3169183224 hasConceptScore W3169183224C154945302 @default.
- W3169183224 hasConceptScore W3169183224C15744967 @default.
- W3169183224 hasConceptScore W3169183224C180747234 @default.
- W3169183224 hasConceptScore W3169183224C199360897 @default.
- W3169183224 hasConceptScore W3169183224C2778112365 @default.
- W3169183224 hasConceptScore W3169183224C2780522230 @default.
- W3169183224 hasConceptScore W3169183224C41008148 @default.
- W3169183224 hasConceptScore W3169183224C54355233 @default.
- W3169183224 hasConceptScore W3169183224C558461103 @default.
- W3169183224 hasConceptScore W3169183224C86803240 @default.
- W3169183224 hasLocation W31691832241 @default.
- W3169183224 hasOpenAccess W3169183224 @default.
- W3169183224 hasPrimaryLocation W31691832241 @default.
- W3169183224 hasRelatedWork W2013538166 @default.
- W3169183224 hasRelatedWork W2032248871 @default.
- W3169183224 hasRelatedWork W2165343866 @default.
- W3169183224 hasRelatedWork W2326629460 @default.
- W3169183224 hasRelatedWork W2347673410 @default.