Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169193436> ?p ?o ?g. }
- W3169193436 endingPage "107214" @default.
- W3169193436 startingPage "107214" @default.
- W3169193436 abstract "Massive digital mobility data are accumulated nowadays due to the proliferation of location-based service (LBS), which provides the opportunity of learning knowledge from human traces that can benefit a range of business and management applications, such as location recommendation, anomaly trajectory detection, crime discrimination, and epidemic tracing. However, human mobility data is usually sporadically updated since people may not frequently access mobile apps or publish the geo-tagged contents. Consequently, distilling meaningful supervised signals from sparse and noisy human mobility is the main challenge of existing models. This work presents a Self-supervised Mobility Learning (SML) framework to encode human mobility semantics and facilitate the downstream location-based tasks. SML is designed for modeling sparse and noisy human mobility trajectories, focusing on leveraging rich spatio-temporal contexts and augmented traces to improve the trajectory representations. It provides a principled way to characterize the inherent movement correlations while tackling the implicit feedback and weak supervision problems in existing model-based approaches. Besides, contrastive instance discrimination is first introduced for spatio-temporal data training by explicitly distinguishing the real user check-ins from the negative samples that tend to be wrongly predicted. Extensive experiments on two practical applications, i.e., location prediction and trajectory classification, demonstrate that our method can significantly improve the location-based services over the state-of-the-art baselines." @default.
- W3169193436 created "2021-06-22" @default.
- W3169193436 creator A5034789908 @default.
- W3169193436 creator A5048618271 @default.
- W3169193436 creator A5053447705 @default.
- W3169193436 creator A5064039775 @default.
- W3169193436 creator A5074234060 @default.
- W3169193436 date "2021-09-01" @default.
- W3169193436 modified "2023-10-10" @default.
- W3169193436 title "Self-supervised human mobility learning for next location prediction and trajectory classification" @default.
- W3169193436 cites W1964461063 @default.
- W3169193436 cites W1972243012 @default.
- W3169193436 cites W1976040640 @default.
- W3169193436 cites W1982300822 @default.
- W3169193436 cites W2056284729 @default.
- W3169193436 cites W2064118757 @default.
- W3169193436 cites W2064675550 @default.
- W3169193436 cites W2067261106 @default.
- W3169193436 cites W2071702404 @default.
- W3169193436 cites W2072609015 @default.
- W3169193436 cites W2073013176 @default.
- W3169193436 cites W2110953678 @default.
- W3169193436 cites W2134946452 @default.
- W3169193436 cites W2163997062 @default.
- W3169193436 cites W2171279286 @default.
- W3169193436 cites W2511693736 @default.
- W3169193436 cites W2528639018 @default.
- W3169193436 cites W2539781657 @default.
- W3169193436 cites W2604411573 @default.
- W3169193436 cites W2741206673 @default.
- W3169193436 cites W2767923185 @default.
- W3169193436 cites W2769112066 @default.
- W3169193436 cites W2788114581 @default.
- W3169193436 cites W2808113502 @default.
- W3169193436 cites W2808425487 @default.
- W3169193436 cites W2808478781 @default.
- W3169193436 cites W2884435112 @default.
- W3169193436 cites W2889337896 @default.
- W3169193436 cites W2911662370 @default.
- W3169193436 cites W2997646554 @default.
- W3169193436 cites W2998640320 @default.
- W3169193436 cites W3015126766 @default.
- W3169193436 cites W3015213852 @default.
- W3169193436 cites W3028571922 @default.
- W3169193436 cites W3034912136 @default.
- W3169193436 cites W3035308866 @default.
- W3169193436 cites W3035524453 @default.
- W3169193436 cites W3038246189 @default.
- W3169193436 cites W3040157551 @default.
- W3169193436 cites W3043790937 @default.
- W3169193436 cites W3080374445 @default.
- W3169193436 cites W3080501557 @default.
- W3169193436 cites W3081224453 @default.
- W3169193436 cites W3091776031 @default.
- W3169193436 cites W3100260481 @default.
- W3169193436 cites W3111769493 @default.
- W3169193436 doi "https://doi.org/10.1016/j.knosys.2021.107214" @default.
- W3169193436 hasPublicationYear "2021" @default.
- W3169193436 type Work @default.
- W3169193436 sameAs 3169193436 @default.
- W3169193436 citedByCount "11" @default.
- W3169193436 countsByYear W31691934362022 @default.
- W3169193436 countsByYear W31691934362023 @default.
- W3169193436 crossrefType "journal-article" @default.
- W3169193436 hasAuthorship W3169193436A5034789908 @default.
- W3169193436 hasAuthorship W3169193436A5048618271 @default.
- W3169193436 hasAuthorship W3169193436A5053447705 @default.
- W3169193436 hasAuthorship W3169193436A5064039775 @default.
- W3169193436 hasAuthorship W3169193436A5074234060 @default.
- W3169193436 hasConcept C104317684 @default.
- W3169193436 hasConcept C111919701 @default.
- W3169193436 hasConcept C119857082 @default.
- W3169193436 hasConcept C121332964 @default.
- W3169193436 hasConcept C124101348 @default.
- W3169193436 hasConcept C1276947 @default.
- W3169193436 hasConcept C13662910 @default.
- W3169193436 hasConcept C138673069 @default.
- W3169193436 hasConcept C154945302 @default.
- W3169193436 hasConcept C159985019 @default.
- W3169193436 hasConcept C184337299 @default.
- W3169193436 hasConcept C185592680 @default.
- W3169193436 hasConcept C191485582 @default.
- W3169193436 hasConcept C192562407 @default.
- W3169193436 hasConcept C199360897 @default.
- W3169193436 hasConcept C204323151 @default.
- W3169193436 hasConcept C41008148 @default.
- W3169193436 hasConcept C55493867 @default.
- W3169193436 hasConcept C66746571 @default.
- W3169193436 hasConcept C739882 @default.
- W3169193436 hasConcept C76155785 @default.
- W3169193436 hasConceptScore W3169193436C104317684 @default.
- W3169193436 hasConceptScore W3169193436C111919701 @default.
- W3169193436 hasConceptScore W3169193436C119857082 @default.
- W3169193436 hasConceptScore W3169193436C121332964 @default.
- W3169193436 hasConceptScore W3169193436C124101348 @default.
- W3169193436 hasConceptScore W3169193436C1276947 @default.
- W3169193436 hasConceptScore W3169193436C13662910 @default.
- W3169193436 hasConceptScore W3169193436C138673069 @default.