Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169217259> ?p ?o ?g. }
- W3169217259 endingPage "1307" @default.
- W3169217259 startingPage "1296" @default.
- W3169217259 abstract "With the rapid development of automated visual analysis, visual analysis systems have become a popular research topic in the field of computer vision and automated analysis. Visual analysis systems can assist humans to detect anomalous events (e.g., fighting, walking alone on the grass, etc). In general, the existing methods for visual anomaly detection are usually based on an autoencoder architecture, i.e., reconstructing the current frame or predicting the future frame. Then, the reconstruction error is adopted as the evaluation metric to identify whether an input is abnormal or not. The flaws of the existing methods are that abnormal samples can also be reconstructed well. In this paper, inspired by the human memory ability, we propose a novel deep neural network (DNN) based model termed cognitive memory-augmented network (CMAN) for the visual anomaly detection problem. The proposed CMAN model assumes that the visual analysis system imitates humans to remember normal samples and then distinguishes abnormal events from the collected videos. Specifically, in the proposed CMAN model, we introduce a memory module that is able to simulate the memory capacity of humans and a density estimation network that can learn the data distribution. The reconstruction errors and the novelty scores are used to distinguish abnormal events from videos. In addition, we develop a two-step scheme to train the proposed model so that the proposed memory module and the density estimation network can cooperate to improve performance. Comprehensive experiments evaluated on various popular benchmarks show the superiority and effectiveness of the proposed CMAN model for visual anomaly detection comparing with the state-of-the-arts methods. The implementation code of our CMAN method can be accessed at https://github.com/CMAN-code/CMAN_pytorch." @default.
- W3169217259 created "2021-06-22" @default.
- W3169217259 creator A5004036509 @default.
- W3169217259 creator A5009074046 @default.
- W3169217259 creator A5049692788 @default.
- W3169217259 creator A5074492050 @default.
- W3169217259 date "2021-07-01" @default.
- W3169217259 modified "2023-10-16" @default.
- W3169217259 title "A Cognitive Memory-Augmented Network for Visual Anomaly Detection" @default.
- W3169217259 cites W2011336129 @default.
- W3169217259 cites W2102625004 @default.
- W3169217259 cites W2122361470 @default.
- W3169217259 cites W2127979711 @default.
- W3169217259 cites W2132870739 @default.
- W3169217259 cites W2134329968 @default.
- W3169217259 cites W2137792864 @default.
- W3169217259 cites W2138092272 @default.
- W3169217259 cites W2138621090 @default.
- W3169217259 cites W2341058432 @default.
- W3169217259 cites W2599354622 @default.
- W3169217259 cites W2601686579 @default.
- W3169217259 cites W2753526808 @default.
- W3169217259 cites W2777342313 @default.
- W3169217259 cites W2809705434 @default.
- W3169217259 cites W2900473852 @default.
- W3169217259 cites W2911219184 @default.
- W3169217259 cites W2925312408 @default.
- W3169217259 cites W2948982773 @default.
- W3169217259 cites W2960737790 @default.
- W3169217259 cites W2963049059 @default.
- W3169217259 cites W2963061824 @default.
- W3169217259 cites W2963541464 @default.
- W3169217259 cites W2963610939 @default.
- W3169217259 cites W2987228832 @default.
- W3169217259 cites W3035240825 @default.
- W3169217259 doi "https://doi.org/10.1109/jas.2021.1004045" @default.
- W3169217259 hasPublicationYear "2021" @default.
- W3169217259 type Work @default.
- W3169217259 sameAs 3169217259 @default.
- W3169217259 citedByCount "13" @default.
- W3169217259 countsByYear W31692172592022 @default.
- W3169217259 countsByYear W31692172592023 @default.
- W3169217259 crossrefType "journal-article" @default.
- W3169217259 hasAuthorship W3169217259A5004036509 @default.
- W3169217259 hasAuthorship W3169217259A5009074046 @default.
- W3169217259 hasAuthorship W3169217259A5049692788 @default.
- W3169217259 hasAuthorship W3169217259A5074492050 @default.
- W3169217259 hasConcept C101738243 @default.
- W3169217259 hasConcept C119857082 @default.
- W3169217259 hasConcept C126042441 @default.
- W3169217259 hasConcept C138885662 @default.
- W3169217259 hasConcept C153180895 @default.
- W3169217259 hasConcept C154945302 @default.
- W3169217259 hasConcept C162324750 @default.
- W3169217259 hasConcept C169760540 @default.
- W3169217259 hasConcept C169900460 @default.
- W3169217259 hasConcept C176217482 @default.
- W3169217259 hasConcept C178278151 @default.
- W3169217259 hasConcept C21547014 @default.
- W3169217259 hasConcept C27206212 @default.
- W3169217259 hasConcept C2778738651 @default.
- W3169217259 hasConcept C2778924833 @default.
- W3169217259 hasConcept C41008148 @default.
- W3169217259 hasConcept C50644808 @default.
- W3169217259 hasConcept C739882 @default.
- W3169217259 hasConcept C76155785 @default.
- W3169217259 hasConcept C86803240 @default.
- W3169217259 hasConceptScore W3169217259C101738243 @default.
- W3169217259 hasConceptScore W3169217259C119857082 @default.
- W3169217259 hasConceptScore W3169217259C126042441 @default.
- W3169217259 hasConceptScore W3169217259C138885662 @default.
- W3169217259 hasConceptScore W3169217259C153180895 @default.
- W3169217259 hasConceptScore W3169217259C154945302 @default.
- W3169217259 hasConceptScore W3169217259C162324750 @default.
- W3169217259 hasConceptScore W3169217259C169760540 @default.
- W3169217259 hasConceptScore W3169217259C169900460 @default.
- W3169217259 hasConceptScore W3169217259C176217482 @default.
- W3169217259 hasConceptScore W3169217259C178278151 @default.
- W3169217259 hasConceptScore W3169217259C21547014 @default.
- W3169217259 hasConceptScore W3169217259C27206212 @default.
- W3169217259 hasConceptScore W3169217259C2778738651 @default.
- W3169217259 hasConceptScore W3169217259C2778924833 @default.
- W3169217259 hasConceptScore W3169217259C41008148 @default.
- W3169217259 hasConceptScore W3169217259C50644808 @default.
- W3169217259 hasConceptScore W3169217259C739882 @default.
- W3169217259 hasConceptScore W3169217259C76155785 @default.
- W3169217259 hasConceptScore W3169217259C86803240 @default.
- W3169217259 hasFunder F4320321001 @default.
- W3169217259 hasFunder F4320335787 @default.
- W3169217259 hasIssue "7" @default.
- W3169217259 hasLocation W31692172591 @default.
- W3169217259 hasOpenAccess W3169217259 @default.
- W3169217259 hasPrimaryLocation W31692172591 @default.
- W3169217259 hasRelatedWork W1939982668 @default.
- W3169217259 hasRelatedWork W2064636555 @default.
- W3169217259 hasRelatedWork W2076090200 @default.
- W3169217259 hasRelatedWork W2081173909 @default.
- W3169217259 hasRelatedWork W2585503716 @default.