Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169487321> ?p ?o ?g. }
Showing items 1 to 49 of
49
with 100 items per page.
- W3169487321 endingPage "179" @default.
- W3169487321 startingPage "167" @default.
- W3169487321 abstract "ABSTRAKPada artikel ini dibahas sifat-sifat hasil kali matriks (mod 2) terkait graf roda, graf pertemanan, dan graf bunga yang grafikal. Beberapa hasil yang diperoleh, A(Wn)A(Wn)(Mod 2) dan A(Wn)A(Sn)(Mod 2) grafikal apabila n=2k+1 dengan Sn merupakan graf bintang. Selanjutnya, diperoleh A(Wn)A(Go)(mod 2) dan A(Wn)A(G0)(mod 2) grafikal untuk semua n=3 dengan G0 adalah subgraf dari Wn dengan degG0v0=0, degG0vl=degWnvl, untuk 1= l = n. Hasil kali matriks (mod 2) yang grafikal juga diperoleh untuk graf pertemanan dan graf bunga dengan komplemen dan subgrafnya masing- masing. Hasil lebih umum diperoleh untuk kondisi sehingga A(G)A(G)(mod 2) grafikal. ABSTRACTIn this paper, we discussed the properties of the wheel, flower and friendship graphs for which the matrix product under modulo 2 was graphical. Let Sn be a star graph and G0 be a subgraph of Wn where degG0v0=0, degG0vl=degWnvl, for 1= l = n. We proved the matrix product A(Wn)A(Wo)(mod 2) and A(Wn)A(Sn)(Mod 2) was graphical for n=2k+1 and the matrix product A(Wn)A(Go)(mod 2) and A(Wn)A(G0)(mod 2) was graphical for all n=3. For the next, a graphical matrix product (mod 2) was also obtained for the friendship graph and the flower graph with its complement and subgraph, respectively. As more general results were obtained for conditions such that A(G)A(G)(mod 2) was graphical." @default.
- W3169487321 created "2021-06-22" @default.
- W3169487321 creator A5049258429 @default.
- W3169487321 creator A5049789441 @default.
- W3169487321 creator A5082943107 @default.
- W3169487321 date "2021-06-09" @default.
- W3169487321 modified "2023-10-16" @default.
- W3169487321 title "Hasil Kali Matriks (Mod 2) pada Graf Roda, Graf Pertemanan dan Graf Bunga" @default.
- W3169487321 doi "https://doi.org/10.34312/jjom.v3i2.10468" @default.
- W3169487321 hasPublicationYear "2021" @default.
- W3169487321 type Work @default.
- W3169487321 sameAs 3169487321 @default.
- W3169487321 citedByCount "0" @default.
- W3169487321 crossrefType "journal-article" @default.
- W3169487321 hasAuthorship W3169487321A5049258429 @default.
- W3169487321 hasAuthorship W3169487321A5049789441 @default.
- W3169487321 hasAuthorship W3169487321A5082943107 @default.
- W3169487321 hasBestOaLocation W31694873211 @default.
- W3169487321 hasConcept C114614502 @default.
- W3169487321 hasConcept C118615104 @default.
- W3169487321 hasConcept C29231244 @default.
- W3169487321 hasConcept C33923547 @default.
- W3169487321 hasConcept C54732982 @default.
- W3169487321 hasConceptScore W3169487321C114614502 @default.
- W3169487321 hasConceptScore W3169487321C118615104 @default.
- W3169487321 hasConceptScore W3169487321C29231244 @default.
- W3169487321 hasConceptScore W3169487321C33923547 @default.
- W3169487321 hasConceptScore W3169487321C54732982 @default.
- W3169487321 hasIssue "2" @default.
- W3169487321 hasLocation W31694873211 @default.
- W3169487321 hasOpenAccess W3169487321 @default.
- W3169487321 hasPrimaryLocation W31694873211 @default.
- W3169487321 hasRelatedWork W1998083236 @default.
- W3169487321 hasRelatedWork W2003185652 @default.
- W3169487321 hasRelatedWork W2024256478 @default.
- W3169487321 hasRelatedWork W2047364089 @default.
- W3169487321 hasRelatedWork W2058706196 @default.
- W3169487321 hasRelatedWork W2127892986 @default.
- W3169487321 hasRelatedWork W2139713416 @default.
- W3169487321 hasRelatedWork W2518730659 @default.
- W3169487321 hasRelatedWork W4280511095 @default.
- W3169487321 hasRelatedWork W2184046220 @default.
- W3169487321 hasVolume "3" @default.
- W3169487321 isParatext "false" @default.
- W3169487321 isRetracted "false" @default.
- W3169487321 magId "3169487321" @default.
- W3169487321 workType "article" @default.