Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169490264> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3169490264 endingPage "104777" @default.
- W3169490264 startingPage "104777" @default.
- W3169490264 abstract "A topical problem of robust statistical estimation of parameters for binomial conditionally nonlinear autoregressive (BiCNAR) time series under innovation outliers is considered. This problem is solved by means of s-order Markov properties for observed time series and probabilistic properties of multivariate conditional frequencies of the future state under its s-prehistory. The new robust statistical estimator ζˆ called frequencies-based estimator (FBE) is constructed for the BiCNAR parameters under innovation outliers with arbitrary discrete probability distribution having some fixed known expectation. Under mild regularity conditions the constructed FBE is shown to have the robustness properties: consistency and asymptotic normality with obtained asymptotic covariance matrix. FBE also has computational advantages: an explicit form and a fast recursive re-estimation algorithm for extension of the model. Asymptotic risk functional and its minimum are evaluated using Fisher information matrix for the considered model. Sensitivity analysis of the statistical estimator ζ̃ for the BiCNAR parameters, that is constructed for the hypothetical model without outliers, is carried out for the situation with innovation outliers: ζ̃ is shown to be inconsistent in this situation, its bias and the instability coefficient are evaluated and analyzed. The robust estimator ζˆ has a free parameter — weight matrix H. The optimal weight matrix H∗ is found by minimization of the asymptotic risk w.r.t. H. Statistical estimator for H∗ based on the observed time series is constructed. Results of multiple computer experiments on simulated and real data illustrate the theory." @default.
- W3169490264 created "2021-06-22" @default.
- W3169490264 creator A5027936236 @default.
- W3169490264 creator A5043398868 @default.
- W3169490264 date "2021-09-01" @default.
- W3169490264 modified "2023-09-30" @default.
- W3169490264 title "Robust estimation for Binomial conditionally nonlinear autoregressive time series based on multivariate conditional frequencies" @default.
- W3169490264 cites W1512593938 @default.
- W3169490264 cites W1986486361 @default.
- W3169490264 cites W2023774933 @default.
- W3169490264 cites W2025045431 @default.
- W3169490264 cites W2025987639 @default.
- W3169490264 cites W2044816791 @default.
- W3169490264 cites W2051234935 @default.
- W3169490264 cites W2056169372 @default.
- W3169490264 cites W2061547296 @default.
- W3169490264 cites W2069432721 @default.
- W3169490264 cites W2086290220 @default.
- W3169490264 cites W2087686387 @default.
- W3169490264 cites W2147526900 @default.
- W3169490264 cites W2162637951 @default.
- W3169490264 cites W2320528005 @default.
- W3169490264 cites W2331668135 @default.
- W3169490264 cites W2477615225 @default.
- W3169490264 cites W2583308334 @default.
- W3169490264 cites W2606999691 @default.
- W3169490264 cites W2760872870 @default.
- W3169490264 cites W2883393273 @default.
- W3169490264 cites W3006608944 @default.
- W3169490264 cites W3016348150 @default.
- W3169490264 cites W3047183286 @default.
- W3169490264 cites W3116725195 @default.
- W3169490264 doi "https://doi.org/10.1016/j.jmva.2021.104777" @default.
- W3169490264 hasPublicationYear "2021" @default.
- W3169490264 type Work @default.
- W3169490264 sameAs 3169490264 @default.
- W3169490264 citedByCount "5" @default.
- W3169490264 countsByYear W31694902642021 @default.
- W3169490264 countsByYear W31694902642022 @default.
- W3169490264 countsByYear W31694902642023 @default.
- W3169490264 crossrefType "journal-article" @default.
- W3169490264 hasAuthorship W3169490264A5027936236 @default.
- W3169490264 hasAuthorship W3169490264A5043398868 @default.
- W3169490264 hasConcept C105795698 @default.
- W3169490264 hasConcept C159877910 @default.
- W3169490264 hasConcept C185429906 @default.
- W3169490264 hasConcept C28826006 @default.
- W3169490264 hasConcept C33923547 @default.
- W3169490264 hasConcept C65778772 @default.
- W3169490264 hasConceptScore W3169490264C105795698 @default.
- W3169490264 hasConceptScore W3169490264C159877910 @default.
- W3169490264 hasConceptScore W3169490264C185429906 @default.
- W3169490264 hasConceptScore W3169490264C28826006 @default.
- W3169490264 hasConceptScore W3169490264C33923547 @default.
- W3169490264 hasConceptScore W3169490264C65778772 @default.
- W3169490264 hasLocation W31694902641 @default.
- W3169490264 hasOpenAccess W3169490264 @default.
- W3169490264 hasPrimaryLocation W31694902641 @default.
- W3169490264 hasRelatedWork W1976861436 @default.
- W3169490264 hasRelatedWork W1978804029 @default.
- W3169490264 hasRelatedWork W1995726632 @default.
- W3169490264 hasRelatedWork W2011234115 @default.
- W3169490264 hasRelatedWork W2067827157 @default.
- W3169490264 hasRelatedWork W2095478276 @default.
- W3169490264 hasRelatedWork W2162048186 @default.
- W3169490264 hasRelatedWork W3121189238 @default.
- W3169490264 hasRelatedWork W3124878804 @default.
- W3169490264 hasRelatedWork W2535273120 @default.
- W3169490264 hasVolume "185" @default.
- W3169490264 isParatext "false" @default.
- W3169490264 isRetracted "false" @default.
- W3169490264 magId "3169490264" @default.
- W3169490264 workType "article" @default.