Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169496002> ?p ?o ?g. }
- W3169496002 endingPage "13" @default.
- W3169496002 startingPage "1" @default.
- W3169496002 abstract "In the absence of data from a randomized trial, researchers may aim to use observational data to draw causal inference about the effect of a treatment on a time-to-event outcome. In this context, interest often focuses on the treatment-specific survival curves, that is, the survival curves were the population under study to be assigned to receive the treatment or not. Under certain conditions, including that all confounders of the treatment-outcome relationship are observed, the treatment-specific survival curve can be identified with a covariate-adjusted survival curve. In this article, we propose a novel cross-fitted doubly-robust estimator that incorporates data-adaptive (e.g., machine learning) estimators of the conditional survival functions. We establish conditions on the nuisance estimators under which our estimator is consistent and asymptotically linear, both pointwise and uniformly in time. We also propose a novel ensemble learner for combining multiple candidate estimators of the conditional survival estimators. Notably, our methods and results accommodate events occurring in discrete or continuous time, or an arbitrary mix of the two. We investigate the practical performance of our methods using numerical studies and an application to the effect of a surgical treatment to prevent metastases of parotid carcinoma on mortality. Supplementary materials for this article are available online." @default.
- W3169496002 created "2021-06-22" @default.
- W3169496002 creator A5017976263 @default.
- W3169496002 creator A5022039512 @default.
- W3169496002 creator A5085731242 @default.
- W3169496002 creator A5088316297 @default.
- W3169496002 date "2023-06-05" @default.
- W3169496002 modified "2023-10-16" @default.
- W3169496002 title "Inference for Treatment-Specific Survival Curves Using Machine Learning" @default.
- W3169496002 cites W1490576214 @default.
- W3169496002 cites W1510876503 @default.
- W3169496002 cites W1963874316 @default.
- W3169496002 cites W1973885323 @default.
- W3169496002 cites W1996862533 @default.
- W3169496002 cites W2005336709 @default.
- W3169496002 cites W2006785901 @default.
- W3169496002 cites W2031330193 @default.
- W3169496002 cites W2032481853 @default.
- W3169496002 cites W2036415434 @default.
- W3169496002 cites W2039857564 @default.
- W3169496002 cites W2040418846 @default.
- W3169496002 cites W2042296356 @default.
- W3169496002 cites W2043630832 @default.
- W3169496002 cites W2054496619 @default.
- W3169496002 cites W2072842951 @default.
- W3169496002 cites W2074671977 @default.
- W3169496002 cites W2082299845 @default.
- W3169496002 cites W2099620796 @default.
- W3169496002 cites W2114132123 @default.
- W3169496002 cites W2116312562 @default.
- W3169496002 cites W2120348567 @default.
- W3169496002 cites W2132917208 @default.
- W3169496002 cites W2167000109 @default.
- W3169496002 cites W2168667982 @default.
- W3169496002 cites W2293389437 @default.
- W3169496002 cites W2322984576 @default.
- W3169496002 cites W2794618537 @default.
- W3169496002 cites W2888384198 @default.
- W3169496002 cites W2914812517 @default.
- W3169496002 cites W2970435724 @default.
- W3169496002 cites W2990340495 @default.
- W3169496002 cites W3049245496 @default.
- W3169496002 cites W3081944489 @default.
- W3169496002 cites W3098302339 @default.
- W3169496002 cites W3099478002 @default.
- W3169496002 cites W3147894994 @default.
- W3169496002 cites W3157155409 @default.
- W3169496002 cites W3161579033 @default.
- W3169496002 cites W3174378484 @default.
- W3169496002 cites W3203869004 @default.
- W3169496002 cites W4233056867 @default.
- W3169496002 cites W4240294902 @default.
- W3169496002 cites W4246259708 @default.
- W3169496002 cites W4248240383 @default.
- W3169496002 cites W4293241248 @default.
- W3169496002 cites W4296375883 @default.
- W3169496002 cites W67506904 @default.
- W3169496002 cites W94294778 @default.
- W3169496002 doi "https://doi.org/10.1080/01621459.2023.2205060" @default.
- W3169496002 hasPublicationYear "2023" @default.
- W3169496002 type Work @default.
- W3169496002 sameAs 3169496002 @default.
- W3169496002 citedByCount "0" @default.
- W3169496002 crossrefType "journal-article" @default.
- W3169496002 hasAuthorship W3169496002A5017976263 @default.
- W3169496002 hasAuthorship W3169496002A5022039512 @default.
- W3169496002 hasAuthorship W3169496002A5085731242 @default.
- W3169496002 hasAuthorship W3169496002A5088316297 @default.
- W3169496002 hasBestOaLocation W31694960022 @default.
- W3169496002 hasConcept C10515644 @default.
- W3169496002 hasConcept C105795698 @default.
- W3169496002 hasConcept C119043178 @default.
- W3169496002 hasConcept C134306372 @default.
- W3169496002 hasConcept C144237770 @default.
- W3169496002 hasConcept C148220186 @default.
- W3169496002 hasConcept C149782125 @default.
- W3169496002 hasConcept C151730666 @default.
- W3169496002 hasConcept C154945302 @default.
- W3169496002 hasConcept C158600405 @default.
- W3169496002 hasConcept C185429906 @default.
- W3169496002 hasConcept C23131810 @default.
- W3169496002 hasConcept C2776214188 @default.
- W3169496002 hasConcept C2777984123 @default.
- W3169496002 hasConcept C2779343474 @default.
- W3169496002 hasConcept C2908647359 @default.
- W3169496002 hasConcept C33923547 @default.
- W3169496002 hasConcept C41008148 @default.
- W3169496002 hasConcept C71924100 @default.
- W3169496002 hasConcept C86803240 @default.
- W3169496002 hasConcept C89337504 @default.
- W3169496002 hasConcept C99454951 @default.
- W3169496002 hasConceptScore W3169496002C10515644 @default.
- W3169496002 hasConceptScore W3169496002C105795698 @default.
- W3169496002 hasConceptScore W3169496002C119043178 @default.
- W3169496002 hasConceptScore W3169496002C134306372 @default.
- W3169496002 hasConceptScore W3169496002C144237770 @default.
- W3169496002 hasConceptScore W3169496002C148220186 @default.
- W3169496002 hasConceptScore W3169496002C149782125 @default.