Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169506721> ?p ?o ?g. }
- W3169506721 abstract "Recent research on the application of remote sensing and deep learning-based analysis in precision agriculture demonstrated a potential for improved crop management and reduced environmental impacts of agricultural production. Despite the promising results, the practical relevance of these technologies for actual field deployment requires novel algorithms that are customized for analysis of agricultural images and robust to implementation on natural field imagery. The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks. The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level. Specifically, we examine premature plant senescence resulting in drought stress on Russet Burbank potato plants. The proposed deep learning model, named Retina-UNet-Ag, is a variant of Retina-UNet (Jaeger et al., 2018) and includes connections from low-level semantic dense representation maps to the feature pyramid network. The paper also introduces a dataset of field images acquired with a Parrot Sequoia camera carried by a Solo unmanned aerial vehicle. Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice score coefficient of 0.74. A comparison to related state-of-the-art deep learning models for object detection revealed that the presented approach is effective for the task at hand. The method applied here is conducive toward the assessment and recognition of potato crop stress (early plant senescence resulting from drought stress in this case) in natural aerial field images collected under real conditions." @default.
- W3169506721 created "2021-06-22" @default.
- W3169506721 creator A5005267824 @default.
- W3169506721 creator A5027387924 @default.
- W3169506721 creator A5039934398 @default.
- W3169506721 creator A5041663670 @default.
- W3169506721 creator A5062113017 @default.
- W3169506721 date "2021-06-14" @default.
- W3169506721 modified "2023-09-27" @default.
- W3169506721 title "Potato Crop Stress Identification in Aerial Images using Deep Learning-based Object Detection" @default.
- W3169506721 cites W1861492603 @default.
- W3169506721 cites W1901129140 @default.
- W3169506721 cites W1996641038 @default.
- W3169506721 cites W2003724897 @default.
- W3169506721 cites W2014408679 @default.
- W3169506721 cites W2019610851 @default.
- W3169506721 cites W2029316659 @default.
- W3169506721 cites W2041636156 @default.
- W3169506721 cites W2069209512 @default.
- W3169506721 cites W2071519467 @default.
- W3169506721 cites W2194775991 @default.
- W3169506721 cites W2233748635 @default.
- W3169506721 cites W2237946102 @default.
- W3169506721 cites W2326051080 @default.
- W3169506721 cites W2339460098 @default.
- W3169506721 cites W2394911398 @default.
- W3169506721 cites W2473156356 @default.
- W3169506721 cites W2501369945 @default.
- W3169506721 cites W2524954406 @default.
- W3169506721 cites W2557283755 @default.
- W3169506721 cites W2565639579 @default.
- W3169506721 cites W2570343428 @default.
- W3169506721 cites W2593778105 @default.
- W3169506721 cites W2604194943 @default.
- W3169506721 cites W2617056706 @default.
- W3169506721 cites W2624423843 @default.
- W3169506721 cites W2704880239 @default.
- W3169506721 cites W2753403518 @default.
- W3169506721 cites W2759366285 @default.
- W3169506721 cites W2767547957 @default.
- W3169506721 cites W2782794599 @default.
- W3169506721 cites W2790979755 @default.
- W3169506721 cites W2799437918 @default.
- W3169506721 cites W2884561390 @default.
- W3169506721 cites W2905583750 @default.
- W3169506721 cites W2906321005 @default.
- W3169506721 cites W2914064754 @default.
- W3169506721 cites W2920018594 @default.
- W3169506721 cites W2920621226 @default.
- W3169506721 cites W2931073790 @default.
- W3169506721 cites W2952478293 @default.
- W3169506721 cites W2953106684 @default.
- W3169506721 cites W2963523428 @default.
- W3169506721 cites W2998294337 @default.
- W3169506721 cites W3000730837 @default.
- W3169506721 cites W3010677011 @default.
- W3169506721 cites W3024464598 @default.
- W3169506721 cites W3026302320 @default.
- W3169506721 cites W3034368724 @default.
- W3169506721 cites W3037156242 @default.
- W3169506721 cites W3038328749 @default.
- W3169506721 cites W3045780708 @default.
- W3169506721 cites W3084179455 @default.
- W3169506721 hasPublicationYear "2021" @default.
- W3169506721 type Work @default.
- W3169506721 sameAs 3169506721 @default.
- W3169506721 citedByCount "0" @default.
- W3169506721 crossrefType "posted-content" @default.
- W3169506721 hasAuthorship W3169506721A5005267824 @default.
- W3169506721 hasAuthorship W3169506721A5027387924 @default.
- W3169506721 hasAuthorship W3169506721A5039934398 @default.
- W3169506721 hasAuthorship W3169506721A5041663670 @default.
- W3169506721 hasAuthorship W3169506721A5062113017 @default.
- W3169506721 hasConcept C108583219 @default.
- W3169506721 hasConcept C118518473 @default.
- W3169506721 hasConcept C119857082 @default.
- W3169506721 hasConcept C120217122 @default.
- W3169506721 hasConcept C127413603 @default.
- W3169506721 hasConcept C137580998 @default.
- W3169506721 hasConcept C142575187 @default.
- W3169506721 hasConcept C154945302 @default.
- W3169506721 hasConcept C166957645 @default.
- W3169506721 hasConcept C202444582 @default.
- W3169506721 hasConcept C205649164 @default.
- W3169506721 hasConcept C2524010 @default.
- W3169506721 hasConcept C31972630 @default.
- W3169506721 hasConcept C33923547 @default.
- W3169506721 hasConcept C39432304 @default.
- W3169506721 hasConcept C41008148 @default.
- W3169506721 hasConcept C50644808 @default.
- W3169506721 hasConcept C62649853 @default.
- W3169506721 hasConcept C88463610 @default.
- W3169506721 hasConcept C9652623 @default.
- W3169506721 hasConcept C97137747 @default.
- W3169506721 hasConceptScore W3169506721C108583219 @default.
- W3169506721 hasConceptScore W3169506721C118518473 @default.
- W3169506721 hasConceptScore W3169506721C119857082 @default.
- W3169506721 hasConceptScore W3169506721C120217122 @default.
- W3169506721 hasConceptScore W3169506721C127413603 @default.
- W3169506721 hasConceptScore W3169506721C137580998 @default.