Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169630429> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3169630429 endingPage "S052" @default.
- W3169630429 startingPage "S051" @default.
- W3169630429 abstract "Abstract Background Computer vision & deep learning(DL)to assess & help with tissue characterization of disease activity in Ulcerative Colitis(UC)through Mayo Endoscopic Subscore(MES)show good results in central reading for clinical trials.UCEIS(Ulcerative Colitis Endoscopic Index of Severity)being a granular index,may be more reflective of disease activity & more primed for artificial intelligence(AI). We set out to create UC detection & scoring,in a single tool & graphic user interface(GUI),improving accuracy & precision of MES & UCEIS scores & reducing the time elapsed between video collection,quality assurance & final scoring.We apply DL models to detect & filter scorable frames,assess quality of endoscopic recordings & predict MES & UCEIS scores in videos of patients with UC Methods We leveraged>375,000frames from endoscopy cases using Olympus scopes(190&180Series).Experienced endoscopists & 9 labellers tagged~22,000(6%)images showing normal, disease state(MES orUCEIS subscores)& non-scorable frames.We separate total frames in 3 categories:training(60%),testing(20%)&validation(20%).Using a Convolutional Neural Network(CNN)Inception V3,including a biopsy & post-biopsy detector,an out-of-the-body framework & blue light algorithm.Similar architecture for detection with multiple separate units & corresponding dense layers taking CNN to provide continuous scores for 5 separate outputs:MES,aggregate UCEIS & individual components Vascular Pattern,Bleeding & Ulcers. Results Multiple metrics evaluate detection models.Overall performance has an accuracy of~88% & a similar precision & recall for all classes. MAE(distance from ground truth)& mean bias(over/under-prediction tendency)are used to assess the performance of the scoring model.Our model performs well as predicted distributions are relatively close to the labelled,ground truth data & MAE & Bias for all frames are relatively low considering the magnitude of the scoring scale. To leverage all our models,we developed a practical tool that should be used to improve efficiency & accuracy of reading & scoring process for UC at different stages of the clinical journey. Conclusion We propose a DL approach based on labelled images to automate a workflow for improving & accelerating UC disease detection & scoring using MES & UCEIS scores. Our deep learning model shows relevant feature identification for scoring disease activity in UC patients, well aligned with both scoring guidelines,performance of experts & demonstrates strong promise for generalization.Going forward, we aim to continue developing our detection & scoring tool. With our detailed workflow supported by deep learning models, we have a driving function to create a precise & potentially superhuman level AI to score disease activity" @default.
- W3169630429 created "2021-06-22" @default.
- W3169630429 creator A5000273217 @default.
- W3169630429 creator A5007223948 @default.
- W3169630429 creator A5008149243 @default.
- W3169630429 creator A5012308531 @default.
- W3169630429 creator A5028425698 @default.
- W3169630429 creator A5033913929 @default.
- W3169630429 creator A5037116389 @default.
- W3169630429 creator A5044391076 @default.
- W3169630429 creator A5048724119 @default.
- W3169630429 creator A5054766466 @default.
- W3169630429 creator A5062633077 @default.
- W3169630429 creator A5063124335 @default.
- W3169630429 creator A5067637282 @default.
- W3169630429 creator A5069786153 @default.
- W3169630429 creator A5072818285 @default.
- W3169630429 creator A5075962668 @default.
- W3169630429 creator A5078620380 @default.
- W3169630429 creator A5088198854 @default.
- W3169630429 creator A5090352318 @default.
- W3169630429 date "2021-05-01" @default.
- W3169630429 modified "2023-09-27" @default.
- W3169630429 title "DOP13 Artificial Intelligence (AI) in endoscopy - Deep learning for detection and scoring of Ulcerative Colitis (UC) disease activity under multiple scoring systems" @default.
- W3169630429 doi "https://doi.org/10.1093/ecco-jcc/jjab073.052" @default.
- W3169630429 hasPublicationYear "2021" @default.
- W3169630429 type Work @default.
- W3169630429 sameAs 3169630429 @default.
- W3169630429 citedByCount "6" @default.
- W3169630429 countsByYear W31696304292022 @default.
- W3169630429 countsByYear W31696304292023 @default.
- W3169630429 crossrefType "journal-article" @default.
- W3169630429 hasAuthorship W3169630429A5000273217 @default.
- W3169630429 hasAuthorship W3169630429A5007223948 @default.
- W3169630429 hasAuthorship W3169630429A5008149243 @default.
- W3169630429 hasAuthorship W3169630429A5012308531 @default.
- W3169630429 hasAuthorship W3169630429A5028425698 @default.
- W3169630429 hasAuthorship W3169630429A5033913929 @default.
- W3169630429 hasAuthorship W3169630429A5037116389 @default.
- W3169630429 hasAuthorship W3169630429A5044391076 @default.
- W3169630429 hasAuthorship W3169630429A5048724119 @default.
- W3169630429 hasAuthorship W3169630429A5054766466 @default.
- W3169630429 hasAuthorship W3169630429A5062633077 @default.
- W3169630429 hasAuthorship W3169630429A5063124335 @default.
- W3169630429 hasAuthorship W3169630429A5067637282 @default.
- W3169630429 hasAuthorship W3169630429A5069786153 @default.
- W3169630429 hasAuthorship W3169630429A5072818285 @default.
- W3169630429 hasAuthorship W3169630429A5075962668 @default.
- W3169630429 hasAuthorship W3169630429A5078620380 @default.
- W3169630429 hasAuthorship W3169630429A5088198854 @default.
- W3169630429 hasAuthorship W3169630429A5090352318 @default.
- W3169630429 hasConcept C142724271 @default.
- W3169630429 hasConcept C154945302 @default.
- W3169630429 hasConcept C2775934546 @default.
- W3169630429 hasConcept C2779134260 @default.
- W3169630429 hasConcept C2780479503 @default.
- W3169630429 hasConcept C41008148 @default.
- W3169630429 hasConcept C71924100 @default.
- W3169630429 hasConcept C81363708 @default.
- W3169630429 hasConcept C81669768 @default.
- W3169630429 hasConceptScore W3169630429C142724271 @default.
- W3169630429 hasConceptScore W3169630429C154945302 @default.
- W3169630429 hasConceptScore W3169630429C2775934546 @default.
- W3169630429 hasConceptScore W3169630429C2779134260 @default.
- W3169630429 hasConceptScore W3169630429C2780479503 @default.
- W3169630429 hasConceptScore W3169630429C41008148 @default.
- W3169630429 hasConceptScore W3169630429C71924100 @default.
- W3169630429 hasConceptScore W3169630429C81363708 @default.
- W3169630429 hasConceptScore W3169630429C81669768 @default.
- W3169630429 hasIssue "Supplement_1" @default.
- W3169630429 hasLocation W31696304291 @default.
- W3169630429 hasOpenAccess W3169630429 @default.
- W3169630429 hasPrimaryLocation W31696304291 @default.
- W3169630429 hasRelatedWork W2065539526 @default.
- W3169630429 hasRelatedWork W2086156447 @default.
- W3169630429 hasRelatedWork W2464962541 @default.
- W3169630429 hasRelatedWork W2475104063 @default.
- W3169630429 hasRelatedWork W2748952813 @default.
- W3169630429 hasRelatedWork W2896381073 @default.
- W3169630429 hasRelatedWork W2899084033 @default.
- W3169630429 hasRelatedWork W3181746755 @default.
- W3169630429 hasRelatedWork W4210249856 @default.
- W3169630429 hasRelatedWork W4382881471 @default.
- W3169630429 hasVolume "15" @default.
- W3169630429 isParatext "false" @default.
- W3169630429 isRetracted "false" @default.
- W3169630429 magId "3169630429" @default.
- W3169630429 workType "article" @default.