Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169676896> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3169676896 abstract "This paper showcases a u-net based architecture for the automated segmentation images of meningeal lymphatic vessels. These lymphatic vessels surround the cerebral cortex and have been recently found to drain waste from the brain. Studies on mice have shown loss of memory and impairment in cognitive ability if the vessels’ draining capacity does not function adequately. As the meningeal lymphatic vasculature itself is a recent discovery, there is no software tailored for automatically segmenting these images. Instead, segmentation must be performed by hand, which is a tedious and errorprone process. By building an automatic segmentation tool for these vessels, we can provide informatics for understanding and researching them, in a quick and reliable way. A convolutional neural network, called u-net, is adapted to the vessel segmentation application, with the goal of teaching the network how to segment the vessels. Segmentation using u-net is compared to traditional non-learning based segmentation methods using Dice coefficient. Three complexity measures are also proposed to evaluate the segmentation quality: vessel ramification index, porosity, and vessel length. The existence of a technique and associated software to automatically segment and analyze these vessels will drastically speed up subsequent neuroscience research in the field." @default.
- W3169676896 created "2021-06-22" @default.
- W3169676896 creator A5034452294 @default.
- W3169676896 creator A5042706548 @default.
- W3169676896 creator A5060166478 @default.
- W3169676896 creator A5076879127 @default.
- W3169676896 date "2020-11-01" @default.
- W3169676896 modified "2023-09-29" @default.
- W3169676896 title "Complexity Analysis and u-net Based Segmentation of Meningeal Lymphatic Vessels" @default.
- W3169676896 cites W1918237073 @default.
- W3169676896 cites W2014252132 @default.
- W3169676896 cites W2027181118 @default.
- W3169676896 cites W2116040950 @default.
- W3169676896 cites W2160754664 @default.
- W3169676896 cites W2167822639 @default.
- W3169676896 cites W2776223742 @default.
- W3169676896 cites W2784956235 @default.
- W3169676896 cites W2883628966 @default.
- W3169676896 doi "https://doi.org/10.1109/ieeeconf51394.2020.9443412" @default.
- W3169676896 hasPublicationYear "2020" @default.
- W3169676896 type Work @default.
- W3169676896 sameAs 3169676896 @default.
- W3169676896 citedByCount "0" @default.
- W3169676896 crossrefType "proceedings-article" @default.
- W3169676896 hasAuthorship W3169676896A5034452294 @default.
- W3169676896 hasAuthorship W3169676896A5042706548 @default.
- W3169676896 hasAuthorship W3169676896A5060166478 @default.
- W3169676896 hasAuthorship W3169676896A5076879127 @default.
- W3169676896 hasConcept C111919701 @default.
- W3169676896 hasConcept C125308379 @default.
- W3169676896 hasConcept C144133560 @default.
- W3169676896 hasConcept C153180895 @default.
- W3169676896 hasConcept C154945302 @default.
- W3169676896 hasConcept C162853370 @default.
- W3169676896 hasConcept C31972630 @default.
- W3169676896 hasConcept C41008148 @default.
- W3169676896 hasConcept C81363708 @default.
- W3169676896 hasConcept C89600930 @default.
- W3169676896 hasConcept C98045186 @default.
- W3169676896 hasConceptScore W3169676896C111919701 @default.
- W3169676896 hasConceptScore W3169676896C125308379 @default.
- W3169676896 hasConceptScore W3169676896C144133560 @default.
- W3169676896 hasConceptScore W3169676896C153180895 @default.
- W3169676896 hasConceptScore W3169676896C154945302 @default.
- W3169676896 hasConceptScore W3169676896C162853370 @default.
- W3169676896 hasConceptScore W3169676896C31972630 @default.
- W3169676896 hasConceptScore W3169676896C41008148 @default.
- W3169676896 hasConceptScore W3169676896C81363708 @default.
- W3169676896 hasConceptScore W3169676896C89600930 @default.
- W3169676896 hasConceptScore W3169676896C98045186 @default.
- W3169676896 hasFunder F4320310536 @default.
- W3169676896 hasLocation W31696768961 @default.
- W3169676896 hasOpenAccess W3169676896 @default.
- W3169676896 hasPrimaryLocation W31696768961 @default.
- W3169676896 hasRelatedWork W2350923073 @default.
- W3169676896 hasRelatedWork W2415731916 @default.
- W3169676896 hasRelatedWork W2520951797 @default.
- W3169676896 hasRelatedWork W2626476017 @default.
- W3169676896 hasRelatedWork W2765889516 @default.
- W3169676896 hasRelatedWork W2896011443 @default.
- W3169676896 hasRelatedWork W2946105701 @default.
- W3169676896 hasRelatedWork W2980201311 @default.
- W3169676896 hasRelatedWork W3107474891 @default.
- W3169676896 hasRelatedWork W4280550577 @default.
- W3169676896 isParatext "false" @default.
- W3169676896 isRetracted "false" @default.
- W3169676896 magId "3169676896" @default.
- W3169676896 workType "article" @default.