Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169698668> ?p ?o ?g. }
- W3169698668 endingPage "066102" @default.
- W3169698668 startingPage "066102" @default.
- W3169698668 abstract "The impinging shock of varying strengths on the free shear layer in a confined supersonic cavity flow is studied numerically using the detached eddy simulation. The resulting spatiotemporal variations are analyzed between the different cases using unsteady statistics, x–t diagrams, spectral analysis, and modal decomposition. A cavity of length to depth ratio [ L / D ] = 2 at a freestream Mach number of M ∞ = 1.71 is considered to be in a confined passage. Impinging shock strength is controlled by changing the ramp angle (θ) on the top wall. The static-pressure ratio across the impinging shock ( p 2 / p 1) is used to quantify the impinging shock strength. Five different impinging shock strengths are studied by changing the pressure ratio: 1.0 , 1.2 , 1.5 , 1.7, and 2.0. As the pressure ratio increases from 1.0 to 2.0, the cavity wall experiences a maximum pressure of 25% due to shock loading. At [ p 2 / p 1 ] = 1.5, fundamental fluidic mode or Rossiter's frequency corresponding to n = 1 mode vanishes whereas frequencies correspond to higher modes (n = 2 and 4) resonate. Wavefronts interaction from the longitudinal reflections inside the cavity with the transverse disturbances from the shock-shear layer interactions is identified to drive the strong resonant behavior. Due to Mach reflections inside the confined passage at [ p 2 / p 1 ] = 2.0, shock-cavity resonance is lost. Based on the present findings, an idea to use a shock-laden confined cavity flow in an enclosed supersonic wall-jet configuration as passive flow control or a fluidic device is also demonstrated." @default.
- W3169698668 created "2021-06-22" @default.
- W3169698668 creator A5014865512 @default.
- W3169698668 date "2021-06-01" @default.
- W3169698668 modified "2023-10-09" @default.
- W3169698668 title "Shock and shear layer interactions in a confined supersonic cavity flow" @default.
- W3169698668 cites W1189929239 @default.
- W3169698668 cites W127693087 @default.
- W3169698668 cites W1968491757 @default.
- W3169698668 cites W1972505855 @default.
- W3169698668 cites W1973409548 @default.
- W3169698668 cites W1974097079 @default.
- W3169698668 cites W1977494508 @default.
- W3169698668 cites W1979579869 @default.
- W3169698668 cites W1980083632 @default.
- W3169698668 cites W1984577213 @default.
- W3169698668 cites W1993020779 @default.
- W3169698668 cites W1993268748 @default.
- W3169698668 cites W1996751605 @default.
- W3169698668 cites W1998165681 @default.
- W3169698668 cites W2004006703 @default.
- W3169698668 cites W2007493454 @default.
- W3169698668 cites W2007542798 @default.
- W3169698668 cites W2007686599 @default.
- W3169698668 cites W2021016261 @default.
- W3169698668 cites W2027212649 @default.
- W3169698668 cites W2028485984 @default.
- W3169698668 cites W2034637958 @default.
- W3169698668 cites W2038023792 @default.
- W3169698668 cites W2045994621 @default.
- W3169698668 cites W2061195309 @default.
- W3169698668 cites W2070620830 @default.
- W3169698668 cites W2075025415 @default.
- W3169698668 cites W2082069419 @default.
- W3169698668 cites W2088489557 @default.
- W3169698668 cites W2088882073 @default.
- W3169698668 cites W2091824914 @default.
- W3169698668 cites W2097473320 @default.
- W3169698668 cites W2140431251 @default.
- W3169698668 cites W2152379991 @default.
- W3169698668 cites W2233098960 @default.
- W3169698668 cites W2401194506 @default.
- W3169698668 cites W2474082876 @default.
- W3169698668 cites W2476564958 @default.
- W3169698668 cites W2497576706 @default.
- W3169698668 cites W2498301847 @default.
- W3169698668 cites W2523365858 @default.
- W3169698668 cites W2605518200 @default.
- W3169698668 cites W2606802639 @default.
- W3169698668 cites W2614484270 @default.
- W3169698668 cites W2621309617 @default.
- W3169698668 cites W2738879339 @default.
- W3169698668 cites W2744261516 @default.
- W3169698668 cites W2769537339 @default.
- W3169698668 cites W2782355990 @default.
- W3169698668 cites W2796461247 @default.
- W3169698668 cites W2883009189 @default.
- W3169698668 cites W2886803882 @default.
- W3169698668 cites W2900102016 @default.
- W3169698668 cites W2911759536 @default.
- W3169698668 cites W2911789625 @default.
- W3169698668 cites W2919939528 @default.
- W3169698668 cites W2921601253 @default.
- W3169698668 cites W2956116072 @default.
- W3169698668 cites W2960074668 @default.
- W3169698668 cites W2963448313 @default.
- W3169698668 cites W2979131098 @default.
- W3169698668 cites W2979605464 @default.
- W3169698668 cites W2998830524 @default.
- W3169698668 cites W3006258582 @default.
- W3169698668 cites W3007213695 @default.
- W3169698668 cites W3012280118 @default.
- W3169698668 cites W3036881632 @default.
- W3169698668 cites W3061702692 @default.
- W3169698668 cites W307491110 @default.
- W3169698668 cites W3080839596 @default.
- W3169698668 cites W3083267083 @default.
- W3169698668 cites W3088542900 @default.
- W3169698668 cites W3096895608 @default.
- W3169698668 cites W3103373175 @default.
- W3169698668 cites W3103462543 @default.
- W3169698668 cites W3106790454 @default.
- W3169698668 cites W3119582809 @default.
- W3169698668 cites W3119705677 @default.
- W3169698668 cites W3126465700 @default.
- W3169698668 cites W3128801140 @default.
- W3169698668 cites W3134324124 @default.
- W3169698668 cites W3145437567 @default.
- W3169698668 cites W4238160257 @default.
- W3169698668 cites W653241804 @default.
- W3169698668 doi "https://doi.org/10.1063/5.0050822" @default.
- W3169698668 hasPublicationYear "2021" @default.
- W3169698668 type Work @default.
- W3169698668 sameAs 3169698668 @default.
- W3169698668 citedByCount "23" @default.
- W3169698668 countsByYear W31696986682021 @default.
- W3169698668 countsByYear W31696986682022 @default.
- W3169698668 countsByYear W31696986682023 @default.