Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169698727> ?p ?o ?g. }
- W3169698727 endingPage "108484" @default.
- W3169698727 startingPage "108484" @default.
- W3169698727 abstract "This study aims to model the effect of process parameters on the conversion of carbon dioxide (CO2) and methane (CH4) during reforming reaction over Nickel (Ni) catalysts. Various supervised machine learning algorithms were employed for the model development. To determine the best model, different configurations of the multilayer perceptron (MLP) and nonlinear auto-regressive exogenous (NARX) neural network models and their performances were evaluated. The performance of the various models was tested through their ability to predict the conversion of the CO2 and CH4. The best MLP network configurations of 5–15–2, 5–4–2, and 5–7–2 were obtained for the Levenberg-Marquardt-, the Bayesian Regularization-, and the Scaled conjugate gradient-trained MLP, respectively. While optimized NARX neural network configurations of 5–18–2, 5–13–2, and 5–8–2 were obtained for the Levenberg-Marquardt, Bayesian Regularization, and the Scaled conjugate gradient training algorithms, respectively. The Bayesian Regularization trained NARX with a coefficient of determination (R2) of 0.998 and MSE of 3.24×10–9 displayed the best performance with an accurate prediction of the thermo-catalytic conversion of CH4 and CO2. The sensitivity analysis revealed that the predicted CH4 and CO2 conversion were influenced in the order of reaction temperature > reduction temperature > calcination temperature > time on stream > Ni loading." @default.
- W3169698727 created "2021-06-22" @default.
- W3169698727 creator A5011590727 @default.
- W3169698727 creator A5019761616 @default.
- W3169698727 creator A5049878855 @default.
- W3169698727 creator A5058572477 @default.
- W3169698727 creator A5059648335 @default.
- W3169698727 creator A5068709071 @default.
- W3169698727 date "2021-09-01" @default.
- W3169698727 modified "2023-10-18" @default.
- W3169698727 title "Carbon dioxide reforming of methane over Ni-based catalysts: Modeling the effect of process parameters on greenhouse gasses conversion using supervised machine learning algorithms" @default.
- W3169698727 cites W1986229972 @default.
- W3169698727 cites W2016242543 @default.
- W3169698727 cites W2021379741 @default.
- W3169698727 cites W2036022174 @default.
- W3169698727 cites W2036627120 @default.
- W3169698727 cites W2053521487 @default.
- W3169698727 cites W2055735801 @default.
- W3169698727 cites W2085206758 @default.
- W3169698727 cites W2087193456 @default.
- W3169698727 cites W2115970760 @default.
- W3169698727 cites W2137356002 @default.
- W3169698727 cites W2138691440 @default.
- W3169698727 cites W2175140173 @default.
- W3169698727 cites W2215559565 @default.
- W3169698727 cites W2345670516 @default.
- W3169698727 cites W2405188741 @default.
- W3169698727 cites W2413487676 @default.
- W3169698727 cites W2460488469 @default.
- W3169698727 cites W2501747803 @default.
- W3169698727 cites W2516436401 @default.
- W3169698727 cites W2573621635 @default.
- W3169698727 cites W2581498946 @default.
- W3169698727 cites W2587792365 @default.
- W3169698727 cites W2592559322 @default.
- W3169698727 cites W2610499325 @default.
- W3169698727 cites W2618550242 @default.
- W3169698727 cites W2744178672 @default.
- W3169698727 cites W2760834859 @default.
- W3169698727 cites W2770929075 @default.
- W3169698727 cites W2772389433 @default.
- W3169698727 cites W2781457005 @default.
- W3169698727 cites W2790322899 @default.
- W3169698727 cites W2791416295 @default.
- W3169698727 cites W2799523895 @default.
- W3169698727 cites W2886881429 @default.
- W3169698727 cites W2887201763 @default.
- W3169698727 cites W2888459087 @default.
- W3169698727 cites W2892268309 @default.
- W3169698727 cites W2895236552 @default.
- W3169698727 cites W2913738374 @default.
- W3169698727 cites W2922692710 @default.
- W3169698727 cites W2939535241 @default.
- W3169698727 cites W2943685203 @default.
- W3169698727 cites W2944841228 @default.
- W3169698727 cites W2966391005 @default.
- W3169698727 cites W2971647874 @default.
- W3169698727 cites W2971693035 @default.
- W3169698727 cites W2972626682 @default.
- W3169698727 cites W2979028505 @default.
- W3169698727 cites W2986321509 @default.
- W3169698727 cites W2999267720 @default.
- W3169698727 cites W3003128019 @default.
- W3169698727 cites W3006210364 @default.
- W3169698727 cites W3015148011 @default.
- W3169698727 cites W3015896373 @default.
- W3169698727 cites W3021934323 @default.
- W3169698727 cites W3027421818 @default.
- W3169698727 cites W3047214712 @default.
- W3169698727 cites W319820990 @default.
- W3169698727 cites W4245364898 @default.
- W3169698727 doi "https://doi.org/10.1016/j.cep.2021.108484" @default.
- W3169698727 hasPublicationYear "2021" @default.
- W3169698727 type Work @default.
- W3169698727 sameAs 3169698727 @default.
- W3169698727 citedByCount "5" @default.
- W3169698727 countsByYear W31696987272022 @default.
- W3169698727 countsByYear W31696987272023 @default.
- W3169698727 crossrefType "journal-article" @default.
- W3169698727 hasAuthorship W3169698727A5011590727 @default.
- W3169698727 hasAuthorship W3169698727A5019761616 @default.
- W3169698727 hasAuthorship W3169698727A5049878855 @default.
- W3169698727 hasAuthorship W3169698727A5058572477 @default.
- W3169698727 hasAuthorship W3169698727A5059648335 @default.
- W3169698727 hasAuthorship W3169698727A5068709071 @default.
- W3169698727 hasConcept C111368507 @default.
- W3169698727 hasConcept C111919701 @default.
- W3169698727 hasConcept C11413529 @default.
- W3169698727 hasConcept C127313418 @default.
- W3169698727 hasConcept C127413603 @default.
- W3169698727 hasConcept C161790260 @default.
- W3169698727 hasConcept C178790620 @default.
- W3169698727 hasConcept C185592680 @default.
- W3169698727 hasConcept C193015443 @default.
- W3169698727 hasConcept C194439259 @default.
- W3169698727 hasConcept C202189072 @default.
- W3169698727 hasConcept C21880701 @default.
- W3169698727 hasConcept C39432304 @default.