Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169787295> ?p ?o ?g. }
- W3169787295 endingPage "107573" @default.
- W3169787295 startingPage "107573" @default.
- W3169787295 abstract "Sparse learning has significant applications in statistics, big data, bioinformatics and machine learning. In big data systems, a large amount of redundant, missing and noisy data cause sparsity, and the rapid changes of information result in uncertainty. Since the traditional sparse learning model is difficult to deal with uncertain data, we propose a Fuzzy Granular Sparse Learning (FGSL) model for identifying antigenic variants of influenza viruses. Firstly, a fuzzy set theory is introduced to measure and granulate the influenza viruses. Some fuzzy granules are induced by a single feature fuzzy granulation. Then, a fuzzy granular vector is constructed from these fuzzy granules, and the fuzzy granular regression is presented. Some constraint norms for granules and granular vectors are proposed, which are two granule norms and four granular vector norms. Therefore, the FGSL model is constructed based on granular regression and constraint norms. The FGSL model includes granular ridge and lasso regressions under different constraint norms. Furthermore, we prove the derivative forms of two granular regression functions, guaranteeing the convergence of the FGSL model. The optimization problem of the FGSL model is discussed and two gradient descent algorithms of the FGSL model are designed. Finally, we employ the FGSL model to serologic data and hemagglutinin sequences for learning antigenicity-associated mutations and inferring antigenic variants. The experimental results confirm some advantages of the FGSL model with fast convergence, low RMSE and strong feature selection ability. We successfully identify antigenic variants of influenza viruses by the FGSL model. • We present some fuzzy granular vectors for designing classifiers. • Some fuzzy granular operators on these granular vectors are defined. • We propose an FGSL model for identifying antigenic variants of influenza viruses. • We further design two gradient descent algorithms for the FGSL model." @default.
- W3169787295 created "2021-06-22" @default.
- W3169787295 creator A5000432967 @default.
- W3169787295 creator A5010850496 @default.
- W3169787295 creator A5057807556 @default.
- W3169787295 creator A5062153725 @default.
- W3169787295 date "2021-09-01" @default.
- W3169787295 modified "2023-10-16" @default.
- W3169787295 title "A fuzzy granular sparse learning model for identifying antigenic variants of influenza viruses" @default.
- W3169787295 cites W1656108767 @default.
- W3169787295 cites W1979158913 @default.
- W3169787295 cites W1985435398 @default.
- W3169787295 cites W1989060270 @default.
- W3169787295 cites W2024172683 @default.
- W3169787295 cites W2034937344 @default.
- W3169787295 cites W2036999870 @default.
- W3169787295 cites W2043107623 @default.
- W3169787295 cites W2063978378 @default.
- W3169787295 cites W2068512312 @default.
- W3169787295 cites W2070865291 @default.
- W3169787295 cites W2077235766 @default.
- W3169787295 cites W2082074261 @default.
- W3169787295 cites W2100556411 @default.
- W3169787295 cites W2112145868 @default.
- W3169787295 cites W2117575248 @default.
- W3169787295 cites W2138019504 @default.
- W3169787295 cites W2153676086 @default.
- W3169787295 cites W2159371584 @default.
- W3169787295 cites W2162755671 @default.
- W3169787295 cites W2165094119 @default.
- W3169787295 cites W2167732364 @default.
- W3169787295 cites W2256627038 @default.
- W3169787295 cites W2313810099 @default.
- W3169787295 cites W2327300044 @default.
- W3169787295 cites W2488854198 @default.
- W3169787295 cites W2557466407 @default.
- W3169787295 cites W2558723476 @default.
- W3169787295 cites W2583115687 @default.
- W3169787295 cites W2588460665 @default.
- W3169787295 cites W2765498735 @default.
- W3169787295 cites W2791449998 @default.
- W3169787295 cites W2795017224 @default.
- W3169787295 cites W2799945821 @default.
- W3169787295 cites W2806304760 @default.
- W3169787295 cites W2889111186 @default.
- W3169787295 cites W2912707296 @default.
- W3169787295 cites W2914483213 @default.
- W3169787295 cites W2940962274 @default.
- W3169787295 cites W2989196101 @default.
- W3169787295 cites W3020067472 @default.
- W3169787295 cites W3026217928 @default.
- W3169787295 cites W3103144163 @default.
- W3169787295 cites W3119197917 @default.
- W3169787295 cites W3124158594 @default.
- W3169787295 cites W4211007335 @default.
- W3169787295 doi "https://doi.org/10.1016/j.asoc.2021.107573" @default.
- W3169787295 hasPublicationYear "2021" @default.
- W3169787295 type Work @default.
- W3169787295 sameAs 3169787295 @default.
- W3169787295 citedByCount "2" @default.
- W3169787295 countsByYear W31697872952023 @default.
- W3169787295 crossrefType "journal-article" @default.
- W3169787295 hasAuthorship W3169787295A5000432967 @default.
- W3169787295 hasAuthorship W3169787295A5010850496 @default.
- W3169787295 hasAuthorship W3169787295A5057807556 @default.
- W3169787295 hasAuthorship W3169787295A5062153725 @default.
- W3169787295 hasConcept C111012933 @default.
- W3169787295 hasConcept C126255220 @default.
- W3169787295 hasConcept C138885662 @default.
- W3169787295 hasConcept C148483581 @default.
- W3169787295 hasConcept C154945302 @default.
- W3169787295 hasConcept C162324750 @default.
- W3169787295 hasConcept C17209119 @default.
- W3169787295 hasConcept C2776401178 @default.
- W3169787295 hasConcept C2777303404 @default.
- W3169787295 hasConcept C33923547 @default.
- W3169787295 hasConcept C41008148 @default.
- W3169787295 hasConcept C41895202 @default.
- W3169787295 hasConcept C50522688 @default.
- W3169787295 hasConcept C58166 @default.
- W3169787295 hasConcept C83665646 @default.
- W3169787295 hasConceptScore W3169787295C111012933 @default.
- W3169787295 hasConceptScore W3169787295C126255220 @default.
- W3169787295 hasConceptScore W3169787295C138885662 @default.
- W3169787295 hasConceptScore W3169787295C148483581 @default.
- W3169787295 hasConceptScore W3169787295C154945302 @default.
- W3169787295 hasConceptScore W3169787295C162324750 @default.
- W3169787295 hasConceptScore W3169787295C17209119 @default.
- W3169787295 hasConceptScore W3169787295C2776401178 @default.
- W3169787295 hasConceptScore W3169787295C2777303404 @default.
- W3169787295 hasConceptScore W3169787295C33923547 @default.
- W3169787295 hasConceptScore W3169787295C41008148 @default.
- W3169787295 hasConceptScore W3169787295C41895202 @default.
- W3169787295 hasConceptScore W3169787295C50522688 @default.
- W3169787295 hasConceptScore W3169787295C58166 @default.
- W3169787295 hasConceptScore W3169787295C83665646 @default.
- W3169787295 hasFunder F4320321001 @default.
- W3169787295 hasFunder F4320321878 @default.