Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169821189> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3169821189 abstract "Users usually express their sentiment online which influences purchased products and services. The computational study of people's feelings and thoughts on entities is known as sentiment analysis. The Long Short-Term Memory (LSTM) model is one of the most common deep learning models for solving sentiment analysis problems. However, they possess some drawbacks such as longer training time, more memory for training, easily over fits, and sensitivity to randomly generated parameters. Hence, there is a need to optimize the LSTM parameters for enhanced sentiment analysis. This paper proposes an optimized LSTM approach using a newly developed novel Pastoralist Optimization Algorithm (POA) for enhanced sentiment analysis. The model was used to analyze sentiments of customers retrieved from Amazon product reviews. The performance of the developed POA-LSTM model shows an optimal accuracy, precision, recall and F1 measure of 77.36%, 85.06%, 76.29%, and 80.44% respectively, when compared with LSTM model with 71.62%, 78.26%, 74.23%, and 76.19% respectively. It was also observed that POA with 20 pastoralist population size performs better than other models with 10, 15, 25 and 30 population size." @default.
- W3169821189 created "2021-06-22" @default.
- W3169821189 creator A5068732765 @default.
- W3169821189 creator A5079365368 @default.
- W3169821189 creator A5086883242 @default.
- W3169821189 date "2021-02-23" @default.
- W3169821189 modified "2023-10-17" @default.
- W3169821189 title "An Optimized Customers Sentiment Analysis Model Using Pastoralist Optimization Algorithm (POA) and Deep Learning" @default.
- W3169821189 cites W1978394996 @default.
- W3169821189 cites W1990916761 @default.
- W3169821189 cites W2004536376 @default.
- W3169821189 cites W2130325614 @default.
- W3169821189 cites W2562607067 @default.
- W3169821189 cites W2563010554 @default.
- W3169821189 cites W2586702902 @default.
- W3169821189 cites W2740567223 @default.
- W3169821189 cites W2740882676 @default.
- W3169821189 cites W2758226690 @default.
- W3169821189 cites W2758755084 @default.
- W3169821189 cites W2762466482 @default.
- W3169821189 cites W2964236337 @default.
- W3169821189 cites W2972830289 @default.
- W3169821189 cites W2998911764 @default.
- W3169821189 cites W4233906183 @default.
- W3169821189 cites W4251326898 @default.
- W3169821189 doi "https://doi.org/10.1109/cybernigeria51635.2021.9428863" @default.
- W3169821189 hasPublicationYear "2021" @default.
- W3169821189 type Work @default.
- W3169821189 sameAs 3169821189 @default.
- W3169821189 citedByCount "0" @default.
- W3169821189 crossrefType "proceedings-article" @default.
- W3169821189 hasAuthorship W3169821189A5068732765 @default.
- W3169821189 hasAuthorship W3169821189A5079365368 @default.
- W3169821189 hasAuthorship W3169821189A5086883242 @default.
- W3169821189 hasConcept C100660578 @default.
- W3169821189 hasConcept C119857082 @default.
- W3169821189 hasConcept C144024400 @default.
- W3169821189 hasConcept C149923435 @default.
- W3169821189 hasConcept C154945302 @default.
- W3169821189 hasConcept C15744967 @default.
- W3169821189 hasConcept C180747234 @default.
- W3169821189 hasConcept C2908647359 @default.
- W3169821189 hasConcept C41008148 @default.
- W3169821189 hasConcept C66402592 @default.
- W3169821189 hasConcept C81669768 @default.
- W3169821189 hasConceptScore W3169821189C100660578 @default.
- W3169821189 hasConceptScore W3169821189C119857082 @default.
- W3169821189 hasConceptScore W3169821189C144024400 @default.
- W3169821189 hasConceptScore W3169821189C149923435 @default.
- W3169821189 hasConceptScore W3169821189C154945302 @default.
- W3169821189 hasConceptScore W3169821189C15744967 @default.
- W3169821189 hasConceptScore W3169821189C180747234 @default.
- W3169821189 hasConceptScore W3169821189C2908647359 @default.
- W3169821189 hasConceptScore W3169821189C41008148 @default.
- W3169821189 hasConceptScore W3169821189C66402592 @default.
- W3169821189 hasConceptScore W3169821189C81669768 @default.
- W3169821189 hasLocation W31698211891 @default.
- W3169821189 hasOpenAccess W3169821189 @default.
- W3169821189 hasPrimaryLocation W31698211891 @default.
- W3169821189 hasRelatedWork W11023528 @default.
- W3169821189 hasRelatedWork W11033076 @default.
- W3169821189 hasRelatedWork W11297145 @default.
- W3169821189 hasRelatedWork W12428677 @default.
- W3169821189 hasRelatedWork W14024944 @default.
- W3169821189 hasRelatedWork W1472067 @default.
- W3169821189 hasRelatedWork W2187087 @default.
- W3169821189 hasRelatedWork W5236451 @default.
- W3169821189 hasRelatedWork W6533109 @default.
- W3169821189 hasRelatedWork W6820108 @default.
- W3169821189 isParatext "false" @default.
- W3169821189 isRetracted "false" @default.
- W3169821189 magId "3169821189" @default.
- W3169821189 workType "article" @default.