Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169925262> ?p ?o ?g. }
- W3169925262 abstract "Cyber-physical systems (CPSs) are widespread in critical domains, and significant damage can be caused if an attacker is able to modify the code of their programmable logic controllers (PLCs). Unfortunately, traditional techniques for attesting code integrity (i.e. verifying that it has not been modified) rely on firmware access or roots-of-trust, neither of which proprietary or legacy PLCs are likely to provide. In this paper, we propose a practical code integrity checking solution based on privacy-preserving black box models that instead attest the input/output behaviour of PLC programs. Using faithful offline copies of the PLC programs, we identify their most important inputs through an information flow analysis, execute them on multiple combinations to collect data, then train neural networks able to predict PLC outputs (i.e. actuator commands) from their inputs. By exploiting the black box nature of the model, our solution maintains the privacy of the original PLC code and does not assume that attackers are unaware of its presence. The trust instead comes from the fact that it is extremely hard to attack the PLC code and neural networks at the same time and with consistent outcomes. We evaluated our approach on a modern six-stage water treatment plant testbed, finding that it could predict actuator states from PLC inputs with near-100% accuracy, and thus could detect all 120 effective code mutations that we subjected the PLCs to. Finally, we found that it is not practically possible to simultaneously modify the PLC code and apply discreet adversarial noise to our attesters in a way that leads to consistent (mis-)predictions." @default.
- W3169925262 created "2021-06-22" @default.
- W3169925262 creator A5053470148 @default.
- W3169925262 creator A5068911982 @default.
- W3169925262 creator A5074878694 @default.
- W3169925262 date "2021-08-18" @default.
- W3169925262 modified "2023-09-26" @default.
- W3169925262 title "Code integrity attestation for PLCs using black box neural network predictions" @default.
- W3169925262 cites W138967869 @default.
- W3169925262 cites W1966709388 @default.
- W3169925262 cites W2021362805 @default.
- W3169925262 cites W2039427951 @default.
- W3169925262 cites W2052303336 @default.
- W3169925262 cites W2056451850 @default.
- W3169925262 cites W2077699686 @default.
- W3169925262 cites W2096224818 @default.
- W3169925262 cites W2099613071 @default.
- W3169925262 cites W2169633417 @default.
- W3169925262 cites W2180612164 @default.
- W3169925262 cites W2399043755 @default.
- W3169925262 cites W2407991977 @default.
- W3169925262 cites W2494784360 @default.
- W3169925262 cites W2511988939 @default.
- W3169925262 cites W2535751405 @default.
- W3169925262 cites W2578943040 @default.
- W3169925262 cites W2583152362 @default.
- W3169925262 cites W2608911009 @default.
- W3169925262 cites W2752493903 @default.
- W3169925262 cites W2755135181 @default.
- W3169925262 cites W2755148105 @default.
- W3169925262 cites W2767389543 @default.
- W3169925262 cites W2768947629 @default.
- W3169925262 cites W2771494169 @default.
- W3169925262 cites W2774169481 @default.
- W3169925262 cites W2803355698 @default.
- W3169925262 cites W2806797541 @default.
- W3169925262 cites W2890112720 @default.
- W3169925262 cites W2891240227 @default.
- W3169925262 cites W2891250288 @default.
- W3169925262 cites W2896370767 @default.
- W3169925262 cites W2896432382 @default.
- W3169925262 cites W2896487165 @default.
- W3169925262 cites W2896680395 @default.
- W3169925262 cites W2897104255 @default.
- W3169925262 cites W2897602411 @default.
- W3169925262 cites W2905500136 @default.
- W3169925262 cites W2930135659 @default.
- W3169925262 cites W2947820052 @default.
- W3169925262 cites W2962980859 @default.
- W3169925262 cites W2963459078 @default.
- W3169925262 cites W2963834268 @default.
- W3169925262 cites W2982379618 @default.
- W3169925262 cites W3007271905 @default.
- W3169925262 cites W3007808067 @default.
- W3169925262 cites W3011215978 @default.
- W3169925262 cites W3013803552 @default.
- W3169925262 cites W3026309498 @default.
- W3169925262 cites W3035727237 @default.
- W3169925262 cites W3047668054 @default.
- W3169925262 cites W3080470908 @default.
- W3169925262 cites W3080614220 @default.
- W3169925262 cites W3088490620 @default.
- W3169925262 cites W3090223178 @default.
- W3169925262 cites W3090636587 @default.
- W3169925262 cites W3099379433 @default.
- W3169925262 cites W3103553961 @default.
- W3169925262 cites W3105599650 @default.
- W3169925262 cites W3106357429 @default.
- W3169925262 cites W3107123323 @default.
- W3169925262 cites W3157444596 @default.
- W3169925262 cites W3164967418 @default.
- W3169925262 cites W4250874986 @default.
- W3169925262 cites W3105400121 @default.
- W3169925262 doi "https://doi.org/10.1145/3468264.3468617" @default.
- W3169925262 hasPublicationYear "2021" @default.
- W3169925262 type Work @default.
- W3169925262 sameAs 3169925262 @default.
- W3169925262 citedByCount "3" @default.
- W3169925262 countsByYear W31699252622022 @default.
- W3169925262 countsByYear W31699252622023 @default.
- W3169925262 crossrefType "proceedings-article" @default.
- W3169925262 hasAuthorship W3169925262A5053470148 @default.
- W3169925262 hasAuthorship W3169925262A5068911982 @default.
- W3169925262 hasAuthorship W3169925262A5074878694 @default.
- W3169925262 hasBestOaLocation W31699252622 @default.
- W3169925262 hasConcept C111919701 @default.
- W3169925262 hasConcept C149635348 @default.
- W3169925262 hasConcept C154945302 @default.
- W3169925262 hasConcept C177264268 @default.
- W3169925262 hasConcept C199360897 @default.
- W3169925262 hasConcept C2776760102 @default.
- W3169925262 hasConcept C31258907 @default.
- W3169925262 hasConcept C31395832 @default.
- W3169925262 hasConcept C41008148 @default.
- W3169925262 hasConcept C43126263 @default.
- W3169925262 hasConcept C50644808 @default.
- W3169925262 hasConcept C67212190 @default.
- W3169925262 hasConcept C9390403 @default.
- W3169925262 hasConcept C94966114 @default.
- W3169925262 hasConceptScore W3169925262C111919701 @default.