Matches in SemOpenAlex for { <https://semopenalex.org/work/W3169981325> ?p ?o ?g. }
- W3169981325 abstract "The COVID-19 pandemic originating in the Wuhan province of China in late 2019 has impacted global health, causing increased mortality among elderly patients and individuals with comorbid conditions. During the passage of the virus through affected populations, it has undergone mutations, some of which have recently been linked with increased viral load and prognostic complexities. Several of these variants are point mutations that are difficult to diagnose using the gold standard quantitative real-time PCR (qRT-PCR) method and necessitates widespread sequencing which is expensive, has long turn-around times, and requires high viral load for calling mutations accurately. Here, we repurpose the high specificity of Francisella novicida Cas9 (FnCas9) to identify mismatches in the target for developing a lateral flow assay that can be successfully adapted for the simultaneous detection of SARS-CoV-2 infection as well as for detecting point mutations in the sequence of the virus obtained from patient samples. We report the detection of the S gene mutation N501Y (present across multiple variant lineages of SARS-CoV-2) within an hour using lateral flow paper strip chemistry. The results were corroborated using deep sequencing on multiple wild-type (n = 37) and mutant (n = 22) virus infected patient samples with a sensitivity of 87% and specificity of 97%. The design principle can be rapidly adapted for other mutations (as shown also for E484K and T716I) highlighting the advantages of quick optimization and roll-out of CRISPR diagnostics (CRISPRDx) for disease surveillance even beyond COVID-19. This study was funded by Council for Scientific and Industrial Research, India.SARS-CoV-2, the virus responsible for COVID-19, has a genome made of RNA (a nucleic acid similar to DNA) that can mutate, potentially making the disease more transmissible, and more lethal. Most countries have monitored the rise of mutated strains using a technique called next generation sequencing (NGS), which is time-consuming, expensive and requires skilled personnel. Sometimes the mutations to the virus are so small that they can only be detected using NGS. Finding cheaper, simpler and faster SARS-CoV-2 tests that can reliably detect mutated forms of the virus is crucial for public health authorities to monitor and manage the spread of the virus. Lateral flow tests (the same technology used in many pregnancy tests) are typically cheap, fast and simple to use. Typically, lateral flow assay strips have a band of immobilised antibodies that bind to a specific protein (or antigen). If a sample contains antigen molecules, these will bind to the immobilised antibodies, causing a chemical reaction that changes the colour of the strip and giving a positive result. However, lateral flow tests that use antibodies cannot easily detect nucleic acids, such as DNA or RNA, let alone mutations in them. To overcome this limitation, lateral flow assays can be used to detect a protein called Cas9, which, in turn, is able to bind to nucleic acids with specific sequences. Small changes in the target sequence change how well Cas9 binds to it, meaning that, in theory, this approach could be used to detect small mutations in the SARS-CoV-2 virus. Kumar et al. made a lateral flow test that could detect a Cas9 protein that binds to a nucleic acid sequence found in a specific mutant strain of SARS-CoV-2. This Cas9 was highly sensitive to changes in its target sequence, so a small mutation in the target nucleic acid led to the protein binding less strongly, and the signal from the lateral flow test being lost. This meant that the lateral flow test designed by Kumar et al. could detect mutations in the SARS-CoV-2 virus at a fraction of the price of NGS approaches if used only for diagnosis. The lateral flow test was capable of detecting mutant viruses in patient samples too, generating a colour signal within an hour of a positive sample being run through the assay. The test developed by Kumar et al. could offer public health authorities a quick and cheap method to monitor the spread of mutant SARS-CoV-2 strains; as well as a way to determine vaccine efficacy against new strains." @default.
- W3169981325 created "2021-06-22" @default.
- W3169981325 creator A5001642790 @default.
- W3169981325 creator A5011107768 @default.
- W3169981325 creator A5016396999 @default.
- W3169981325 creator A5021758728 @default.
- W3169981325 creator A5022524918 @default.
- W3169981325 creator A5026498959 @default.
- W3169981325 creator A5028828610 @default.
- W3169981325 creator A5029186826 @default.
- W3169981325 creator A5029932093 @default.
- W3169981325 creator A5029990239 @default.
- W3169981325 creator A5034970712 @default.
- W3169981325 creator A5064367586 @default.
- W3169981325 creator A5065689484 @default.
- W3169981325 creator A5071961323 @default.
- W3169981325 creator A5077775243 @default.
- W3169981325 date "2021-06-09" @default.
- W3169981325 modified "2023-09-30" @default.
- W3169981325 title "FnCas9-based CRISPR diagnostic for rapid and accurate detection of major SARS-CoV-2 variants on a paper strip" @default.
- W3169981325 cites W1519765314 @default.
- W3169981325 cites W1579775620 @default.
- W3169981325 cites W2100187217 @default.
- W3169981325 cites W2108982334 @default.
- W3169981325 cites W2162098634 @default.
- W3169981325 cites W2605343262 @default.
- W3169981325 cites W2789843538 @default.
- W3169981325 cites W2898598946 @default.
- W3169981325 cites W2952045272 @default.
- W3169981325 cites W2979204485 @default.
- W3169981325 cites W3008349875 @default.
- W3169981325 cites W3011959119 @default.
- W3169981325 cites W3017334101 @default.
- W3169981325 cites W3017703988 @default.
- W3169981325 cites W3020188044 @default.
- W3169981325 cites W3021161367 @default.
- W3169981325 cites W3024194273 @default.
- W3169981325 cites W3039901154 @default.
- W3169981325 cites W3042091277 @default.
- W3169981325 cites W3043124965 @default.
- W3169981325 cites W3043177992 @default.
- W3169981325 cites W3043746245 @default.
- W3169981325 cites W3047349135 @default.
- W3169981325 cites W3080708411 @default.
- W3169981325 cites W3084605929 @default.
- W3169981325 cites W3087541931 @default.
- W3169981325 cites W3090267847 @default.
- W3169981325 cites W3092685603 @default.
- W3169981325 cites W3092863233 @default.
- W3169981325 cites W3093701056 @default.
- W3169981325 cites W3096064145 @default.
- W3169981325 cites W3097643224 @default.
- W3169981325 cites W3108711749 @default.
- W3169981325 cites W3116015992 @default.
- W3169981325 cites W3118957837 @default.
- W3169981325 cites W3119198396 @default.
- W3169981325 cites W3123733204 @default.
- W3169981325 cites W3127401064 @default.
- W3169981325 cites W3127941442 @default.
- W3169981325 cites W3129399011 @default.
- W3169981325 cites W3130921941 @default.
- W3169981325 cites W3131334373 @default.
- W3169981325 cites W3131686432 @default.
- W3169981325 cites W3132370527 @default.
- W3169981325 cites W3133105869 @default.
- W3169981325 cites W3133794453 @default.
- W3169981325 cites W3134208712 @default.
- W3169981325 cites W3134446480 @default.
- W3169981325 cites W3136588845 @default.
- W3169981325 cites W3138636440 @default.
- W3169981325 cites W3140318909 @default.
- W3169981325 cites W3142246475 @default.
- W3169981325 cites W3156343712 @default.
- W3169981325 cites W4211037082 @default.
- W3169981325 doi "https://doi.org/10.7554/elife.67130" @default.
- W3169981325 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8289407" @default.
- W3169981325 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34106048" @default.
- W3169981325 hasPublicationYear "2021" @default.
- W3169981325 type Work @default.
- W3169981325 sameAs 3169981325 @default.
- W3169981325 citedByCount "49" @default.
- W3169981325 countsByYear W31699813252021 @default.
- W3169981325 countsByYear W31699813252022 @default.
- W3169981325 countsByYear W31699813252023 @default.
- W3169981325 crossrefType "journal-article" @default.
- W3169981325 hasAuthorship W3169981325A5001642790 @default.
- W3169981325 hasAuthorship W3169981325A5011107768 @default.
- W3169981325 hasAuthorship W3169981325A5016396999 @default.
- W3169981325 hasAuthorship W3169981325A5021758728 @default.
- W3169981325 hasAuthorship W3169981325A5022524918 @default.
- W3169981325 hasAuthorship W3169981325A5026498959 @default.
- W3169981325 hasAuthorship W3169981325A5028828610 @default.
- W3169981325 hasAuthorship W3169981325A5029186826 @default.
- W3169981325 hasAuthorship W3169981325A5029932093 @default.
- W3169981325 hasAuthorship W3169981325A5029990239 @default.
- W3169981325 hasAuthorship W3169981325A5034970712 @default.
- W3169981325 hasAuthorship W3169981325A5064367586 @default.
- W3169981325 hasAuthorship W3169981325A5065689484 @default.
- W3169981325 hasAuthorship W3169981325A5071961323 @default.
- W3169981325 hasAuthorship W3169981325A5077775243 @default.