Matches in SemOpenAlex for { <https://semopenalex.org/work/W3170051738> ?p ?o ?g. }
- W3170051738 abstract "Indubitable growth of smart and connected edge devices with substantial processing power has made ubiquitous computing possible. These edge devices either produce streams of information related to the environment in which they are deployed or the devices can be located in proximity to such information producers. Distributed Data Stream Processing is a programming paradigm that is introduced to process these event streams to acquire relevant insights in order to make informed decisions. While deploying data stream processing frameworks on distributed cloud infrastructure has been the convention, for latency critical real-time applications that rely on data streams produced outside the cloud on the edge devices, the communication overhead between the cloud and the edge is detrimental. The privacy concerns surrounding where the data streams are processed is also contributing to the move towards utilisation of the edge devices for processing user-specific data. The emergence of Edge Computing has helped to mitigate these challenges by enabling to execute processes on edge devices to utilise their unused potential. Distributed data stream processing that shares edge and cloud computing infrastructure is a nascent field which we believe to have many practical applications in the real world such as federated learning, augmented/virtual reality and healthcare applications.In this thesis, we investigate novel modelling techniques and solutions for sharing the workload of distributed data stream processing applications that utilise edge and cloud computing infrastructure. The outcome of this study is a series of research works that emanates from a comprehensive model and a simulation framework developed using this model, which we utilise to develop workload sharing strategies that consider the intrinsic characteristics of data stream processing applications executed on edge and cloud resources.First, we focus on developing a comprehensive model for representing the inherent characteristics of data stream processing applications such as the event generation rate and the distribution of even sizes at the sources, the selectivity and productivity distribution at the operators, placement of tasks onto the resources, and recording the metrics such as end-to-end latency, processing latency, networking latency and the power consumption. We also incorporate the processing, networking, power consumption, and curating characteristics of edge and cloud computing infrastructure to the model from the perspective of data stream processing. Based on our model, we develop a simulation tool, which we call ECSNeT++, and verify its accuracy by comparing the latency and power consumption metrics acquired from the calibrated simulator and a real test-bed, both of which execute identical applications. We show that ECSNeT++ can model a real deployment, with proper calibration. With the public availability of ECSNeT++ as an open source software, and the verified accuracy of our results, ECSNeT++ can be used effectively for predicting the behaviour and performance of stream processing applications running on large scale, heterogeneous edge and cloud computing infrastructure.Next, we investigate how to optimally share the application workload between the edge and cloud computing resources while upholding quality of service requirements. A typical data stream processing application is formed as a directed acyclic graph of tasks that consist of sources that generate events, operators that process incoming events and sinks that act as destinations for event streams. In order to share the workload of such an application, these tasks need to placed onto the available computing resources. To this end, we devise an optimisation framework, consisting of a constraint satisfaction formulation and a system model, that aims to minimise end-to-end latency through appropriate placement of tasks either on cloud or edge devices. We test our optimisation framework using ECSNeT++, with realistic topologies and calibration, and show that compared to edge-only and cloud-only placements, our framework is capable of achieving 8-14% latency reduction and 14-15% energy reduction when compared to the conventional cloud only placement, and 14-16% latency reduction when compared to a naive edge only placement while also reducing the energy consumption per event by 1-5%.Finally, in order to cater the multitude of applications that operate under dynamic conditions, we propose a semi-dynamic task switching methodology that can be applied to optimise end-to-end latency of the application. Here, we approach the task placement problem for changing environment conditions in two phases: in the first phase respective locally optimal task placements are acquired for discrete environment conditions which are then fed to the second phase, where the problem is modelled as an Infinite Horizon Markov Decision Process with discounted rewards. By solving this problem, an optimal policy can be obtained and we show that this optimal policy can improve the performance of distributed data stream processing applications when compared with a dynamic greedy task placement approach as well as static task placement. For real-world applications executed on ECSNeT++, our approach can improve the latency as much as 10 - 17% on average when compared to a fully dynamic greedy approach." @default.
- W3170051738 created "2021-06-22" @default.
- W3170051738 creator A5046209509 @default.
- W3170051738 date "2021-01-01" @default.
- W3170051738 modified "2023-09-27" @default.
- W3170051738 title "Distributed data stream processing and task placement on edge-cloud infrastructure" @default.
- W3170051738 cites W1510816548 @default.
- W3170051738 cites W1513178448 @default.
- W3170051738 cites W1941983649 @default.
- W3170051738 cites W1966282860 @default.
- W3170051738 cites W1970750044 @default.
- W3170051738 cites W1974879833 @default.
- W3170051738 cites W1999644179 @default.
- W3170051738 cites W2011039300 @default.
- W3170051738 cites W2045287414 @default.
- W3170051738 cites W2076337359 @default.
- W3170051738 cites W2114936722 @default.
- W3170051738 cites W2115503987 @default.
- W3170051738 cites W2119567691 @default.
- W3170051738 cites W2131629857 @default.
- W3170051738 cites W2137152139 @default.
- W3170051738 cites W2150871235 @default.
- W3170051738 cites W2157172936 @default.
- W3170051738 cites W2159875930 @default.
- W3170051738 cites W2169070268 @default.
- W3170051738 cites W2202090419 @default.
- W3170051738 cites W2222234180 @default.
- W3170051738 cites W2270246289 @default.
- W3170051738 cites W2295019192 @default.
- W3170051738 cites W2394115245 @default.
- W3170051738 cites W2401898190 @default.
- W3170051738 cites W2414114959 @default.
- W3170051738 cites W2434290318 @default.
- W3170051738 cites W2484996141 @default.
- W3170051738 cites W2519162659 @default.
- W3170051738 cites W2533866537 @default.
- W3170051738 cites W2565437603 @default.
- W3170051738 cites W2568772110 @default.
- W3170051738 cites W2573834517 @default.
- W3170051738 cites W2578151840 @default.
- W3170051738 cites W2598793396 @default.
- W3170051738 cites W2612481412 @default.
- W3170051738 cites W2735912858 @default.
- W3170051738 cites W2736823879 @default.
- W3170051738 cites W2747974859 @default.
- W3170051738 cites W2762456226 @default.
- W3170051738 cites W2783495827 @default.
- W3170051738 cites W2786027963 @default.
- W3170051738 cites W2789291802 @default.
- W3170051738 cites W2795893807 @default.
- W3170051738 cites W2797431058 @default.
- W3170051738 cites W2799307695 @default.
- W3170051738 cites W2806040473 @default.
- W3170051738 cites W2807625713 @default.
- W3170051738 cites W2844113973 @default.
- W3170051738 cites W2885290559 @default.
- W3170051738 cites W2905123056 @default.
- W3170051738 cites W2906622513 @default.
- W3170051738 cites W2912721114 @default.
- W3170051738 cites W2944311919 @default.
- W3170051738 cites W2960347246 @default.
- W3170051738 cites W2980360843 @default.
- W3170051738 cites W3000399218 @default.
- W3170051738 hasPublicationYear "2021" @default.
- W3170051738 type Work @default.
- W3170051738 sameAs 3170051738 @default.
- W3170051738 citedByCount "0" @default.
- W3170051738 crossrefType "dissertation" @default.
- W3170051738 hasAuthorship W3170051738A5046209509 @default.
- W3170051738 hasConcept C107027933 @default.
- W3170051738 hasConcept C111919701 @default.
- W3170051738 hasConcept C120314980 @default.
- W3170051738 hasConcept C124101348 @default.
- W3170051738 hasConcept C138236772 @default.
- W3170051738 hasConcept C138827492 @default.
- W3170051738 hasConcept C162307627 @default.
- W3170051738 hasConcept C2778456923 @default.
- W3170051738 hasConcept C41008148 @default.
- W3170051738 hasConcept C76155785 @default.
- W3170051738 hasConcept C77088390 @default.
- W3170051738 hasConcept C79974875 @default.
- W3170051738 hasConcept C89198739 @default.
- W3170051738 hasConceptScore W3170051738C107027933 @default.
- W3170051738 hasConceptScore W3170051738C111919701 @default.
- W3170051738 hasConceptScore W3170051738C120314980 @default.
- W3170051738 hasConceptScore W3170051738C124101348 @default.
- W3170051738 hasConceptScore W3170051738C138236772 @default.
- W3170051738 hasConceptScore W3170051738C138827492 @default.
- W3170051738 hasConceptScore W3170051738C162307627 @default.
- W3170051738 hasConceptScore W3170051738C2778456923 @default.
- W3170051738 hasConceptScore W3170051738C41008148 @default.
- W3170051738 hasConceptScore W3170051738C76155785 @default.
- W3170051738 hasConceptScore W3170051738C77088390 @default.
- W3170051738 hasConceptScore W3170051738C79974875 @default.
- W3170051738 hasConceptScore W3170051738C89198739 @default.
- W3170051738 hasLocation W31700517381 @default.
- W3170051738 hasOpenAccess W3170051738 @default.
- W3170051738 hasPrimaryLocation W31700517381 @default.
- W3170051738 hasRelatedWork W2060066922 @default.
- W3170051738 hasRelatedWork W2422146472 @default.