Matches in SemOpenAlex for { <https://semopenalex.org/work/W3170084927> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W3170084927 endingPage "203" @default.
- W3170084927 startingPage "189" @default.
- W3170084927 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a finite nonabelian group, and let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=psi colon upper G right-arrow upper G> <mml:semantics> <mml:mrow> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mo>:</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>psi :Gto G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a homomorphism with abelian image. We show how <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=psi> <mml:semantics> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:annotation encoding=application/x-tex>psi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> gives rise to two Hopf-Galois structures on a Galois extension <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L slash upper K> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>L/K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with Galois group (isomorphic to) <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; one of these structures generalizes the construction given by a “fixed point free abelian endomorphism” introduced by Childs in 2013. We construct the skew left brace corresponding to each of the two Hopf-Galois structures above. We will show that one of the skew left braces is in fact a bi-skew brace, allowing us to obtain four set-theoretic solutions to the Yang-Baxter equation as well as a pair of Hopf-Galois structures on a (potentially) different finite Galois extension." @default.
- W3170084927 created "2021-06-22" @default.
- W3170084927 creator A5088248013 @default.
- W3170084927 date "2021-06-09" @default.
- W3170084927 modified "2023-10-16" @default.
- W3170084927 title "Abelian maps, bi-skew braces, and opposite pairs of Hopf-Galois structures" @default.
- W3170084927 cites W1540115654 @default.
- W3170084927 cites W1854360395 @default.
- W3170084927 cites W2002801602 @default.
- W3170084927 cites W2007152098 @default.
- W3170084927 cites W2025896328 @default.
- W3170084927 cites W2050667744 @default.
- W3170084927 cites W2056454133 @default.
- W3170084927 cites W2071756843 @default.
- W3170084927 cites W2262154813 @default.
- W3170084927 cites W2302011925 @default.
- W3170084927 cites W2900770265 @default.
- W3170084927 cites W2963245197 @default.
- W3170084927 cites W2963593525 @default.
- W3170084927 cites W2963834791 @default.
- W3170084927 cites W2983447844 @default.
- W3170084927 cites W3101270604 @default.
- W3170084927 doi "https://doi.org/10.1090/bproc/87" @default.
- W3170084927 hasPublicationYear "2021" @default.
- W3170084927 type Work @default.
- W3170084927 sameAs 3170084927 @default.
- W3170084927 citedByCount "11" @default.
- W3170084927 countsByYear W31700849272021 @default.
- W3170084927 countsByYear W31700849272022 @default.
- W3170084927 countsByYear W31700849272023 @default.
- W3170084927 crossrefType "journal-article" @default.
- W3170084927 hasAuthorship W3170084927A5088248013 @default.
- W3170084927 hasBestOaLocation W31700849271 @default.
- W3170084927 hasConcept C11413529 @default.
- W3170084927 hasConcept C154945302 @default.
- W3170084927 hasConcept C2776321320 @default.
- W3170084927 hasConcept C41008148 @default.
- W3170084927 hasConceptScore W3170084927C11413529 @default.
- W3170084927 hasConceptScore W3170084927C154945302 @default.
- W3170084927 hasConceptScore W3170084927C2776321320 @default.
- W3170084927 hasConceptScore W3170084927C41008148 @default.
- W3170084927 hasIssue "16" @default.
- W3170084927 hasLocation W31700849271 @default.
- W3170084927 hasLocation W31700849272 @default.
- W3170084927 hasOpenAccess W3170084927 @default.
- W3170084927 hasPrimaryLocation W31700849271 @default.
- W3170084927 hasRelatedWork W151193258 @default.
- W3170084927 hasRelatedWork W1529400504 @default.
- W3170084927 hasRelatedWork W1607472309 @default.
- W3170084927 hasRelatedWork W1871911958 @default.
- W3170084927 hasRelatedWork W1892467659 @default.
- W3170084927 hasRelatedWork W2348710178 @default.
- W3170084927 hasRelatedWork W2808586768 @default.
- W3170084927 hasRelatedWork W2998403542 @default.
- W3170084927 hasRelatedWork W3107474891 @default.
- W3170084927 hasRelatedWork W38394648 @default.
- W3170084927 hasVolume "8" @default.
- W3170084927 isParatext "false" @default.
- W3170084927 isRetracted "false" @default.
- W3170084927 magId "3170084927" @default.
- W3170084927 workType "article" @default.