Matches in SemOpenAlex for { <https://semopenalex.org/work/W3170231102> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3170231102 abstract "<p>Spatially explicit information on forest management at a global scale is critical for understanding the current status of forests for sustainable forest management and restoration. Whereas remotely sensed based datasets, developed by applying ML and AI algorithms, can successfully depict tree cover and other land cover types, it has not yet been used to depict untouched forest and different degrees of forest management. We show for the first time that with sufficient training data derived from very high-resolution imagery a differentiation within the tree cover class of various levels of forest management is possible.</p><p>In this session, we would like to present our approach for labeling forest related training data by using Geo-Wiki application (https://www.geo-wiki.org/). Moreover, we would like to share a new open global training data set on forest management we collected from a series of Geo-Wiki campaigns. In February 2019, we organized an expert workshop to (1) discuss the variety of forest management practices that take place in different parts of the world; (2) generalize the definitions for the application at global scale; (3) finalize the Geo-Wiki interface for the crowdsourcing campaigns; and (4) build a data set of control points (or the expert data set), which we used later to monitor the quality of the crowdsourced contributions by the volunteers. We involved forest experts from different regions around the world to explore what types of forest management information could be collected from visual interpretation of very high-resolution images from Google Maps and Microsoft Bing, in combination with Sentinel time series and Normalized Difference Vegetation Index (NDVI) profiles derived from Google Earth Engine (GEE). Based on the results of this analysis, we expanded these campaigns by involving a broader group of participants, mainly people recruited from remote sensing, geography and forest research institutes and universities.</p><p>In total, we collected forest data for approximately 230 000 locations globally. These data are of sufficient density and quality and therefore could be used in many ML and AI applications for forests at regional and local scale.&#160; We also provide an example of ML application, a remotely sensed based global forest management map at a 100 m resolution (PROBA-V) for the year 2015. It includes such classes as intact forests, forests with signs of human impact, including clear cuts and logging, replanted forest, woody plantations with a rotation period up to 15 years, oil palms and agroforestry. The results of independent statistical validation show that the map&#8217;s overall accuracy is 81%.</p>" @default.
- W3170231102 created "2021-06-22" @default.
- W3170231102 creator A5013873379 @default.
- W3170231102 creator A5040252235 @default.
- W3170231102 creator A5047900352 @default.
- W3170231102 creator A5049757038 @default.
- W3170231102 creator A5059691294 @default.
- W3170231102 creator A5060059946 @default.
- W3170231102 date "2021-03-04" @default.
- W3170231102 modified "2023-10-14" @default.
- W3170231102 title "Collecting training data to map forest management at global scale" @default.
- W3170231102 doi "https://doi.org/10.5194/egusphere-egu21-15297" @default.
- W3170231102 hasPublicationYear "2021" @default.
- W3170231102 type Work @default.
- W3170231102 sameAs 3170231102 @default.
- W3170231102 citedByCount "0" @default.
- W3170231102 crossrefType "posted-content" @default.
- W3170231102 hasAuthorship W3170231102A5013873379 @default.
- W3170231102 hasAuthorship W3170231102A5040252235 @default.
- W3170231102 hasAuthorship W3170231102A5047900352 @default.
- W3170231102 hasAuthorship W3170231102A5049757038 @default.
- W3170231102 hasAuthorship W3170231102A5059691294 @default.
- W3170231102 hasAuthorship W3170231102A5060059946 @default.
- W3170231102 hasConcept C107826830 @default.
- W3170231102 hasConcept C113174947 @default.
- W3170231102 hasConcept C124101348 @default.
- W3170231102 hasConcept C134306372 @default.
- W3170231102 hasConcept C136197465 @default.
- W3170231102 hasConcept C136764020 @default.
- W3170231102 hasConcept C154945302 @default.
- W3170231102 hasConcept C1668388 @default.
- W3170231102 hasConcept C177264268 @default.
- W3170231102 hasConcept C18903297 @default.
- W3170231102 hasConcept C199360897 @default.
- W3170231102 hasConcept C205649164 @default.
- W3170231102 hasConcept C2522767166 @default.
- W3170231102 hasConcept C2775841215 @default.
- W3170231102 hasConcept C2777212361 @default.
- W3170231102 hasConcept C2778755073 @default.
- W3170231102 hasConcept C2779182362 @default.
- W3170231102 hasConcept C28631016 @default.
- W3170231102 hasConcept C2986088632 @default.
- W3170231102 hasConcept C33923547 @default.
- W3170231102 hasConcept C39432304 @default.
- W3170231102 hasConcept C41008148 @default.
- W3170231102 hasConcept C58640448 @default.
- W3170231102 hasConcept C62230096 @default.
- W3170231102 hasConcept C86803240 @default.
- W3170231102 hasConcept C97137747 @default.
- W3170231102 hasConceptScore W3170231102C107826830 @default.
- W3170231102 hasConceptScore W3170231102C113174947 @default.
- W3170231102 hasConceptScore W3170231102C124101348 @default.
- W3170231102 hasConceptScore W3170231102C134306372 @default.
- W3170231102 hasConceptScore W3170231102C136197465 @default.
- W3170231102 hasConceptScore W3170231102C136764020 @default.
- W3170231102 hasConceptScore W3170231102C154945302 @default.
- W3170231102 hasConceptScore W3170231102C1668388 @default.
- W3170231102 hasConceptScore W3170231102C177264268 @default.
- W3170231102 hasConceptScore W3170231102C18903297 @default.
- W3170231102 hasConceptScore W3170231102C199360897 @default.
- W3170231102 hasConceptScore W3170231102C205649164 @default.
- W3170231102 hasConceptScore W3170231102C2522767166 @default.
- W3170231102 hasConceptScore W3170231102C2775841215 @default.
- W3170231102 hasConceptScore W3170231102C2777212361 @default.
- W3170231102 hasConceptScore W3170231102C2778755073 @default.
- W3170231102 hasConceptScore W3170231102C2779182362 @default.
- W3170231102 hasConceptScore W3170231102C28631016 @default.
- W3170231102 hasConceptScore W3170231102C2986088632 @default.
- W3170231102 hasConceptScore W3170231102C33923547 @default.
- W3170231102 hasConceptScore W3170231102C39432304 @default.
- W3170231102 hasConceptScore W3170231102C41008148 @default.
- W3170231102 hasConceptScore W3170231102C58640448 @default.
- W3170231102 hasConceptScore W3170231102C62230096 @default.
- W3170231102 hasConceptScore W3170231102C86803240 @default.
- W3170231102 hasConceptScore W3170231102C97137747 @default.
- W3170231102 hasLocation W31702311021 @default.
- W3170231102 hasOpenAccess W3170231102 @default.
- W3170231102 hasPrimaryLocation W31702311021 @default.
- W3170231102 hasRelatedWork W2418590 @default.
- W3170231102 hasRelatedWork W279161 @default.
- W3170231102 hasRelatedWork W4767755 @default.
- W3170231102 hasRelatedWork W5568129 @default.
- W3170231102 hasRelatedWork W5782510 @default.
- W3170231102 hasRelatedWork W6490761 @default.
- W3170231102 hasRelatedWork W6760167 @default.
- W3170231102 hasRelatedWork W7008586 @default.
- W3170231102 hasRelatedWork W8914295 @default.
- W3170231102 hasRelatedWork W2921316 @default.
- W3170231102 isParatext "false" @default.
- W3170231102 isRetracted "false" @default.
- W3170231102 magId "3170231102" @default.
- W3170231102 workType "article" @default.