Matches in SemOpenAlex for { <https://semopenalex.org/work/W3170233488> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W3170233488 abstract "The goal of this work is to understand the intrinsic properties that give natural enzymes their catalytic power and to learn how to build these properties in silico, for the design and expression of artificial enzymes that catalyze reactions that do not occur in nature. Partial Order Optimum Likelihood (POOL) is a machine learning method developed by us to predict residues important for function, using the 3D structure of the query protein. The input features to POOL are based on computed electrostatic and chemical properties from THEMATICS. These input features are effectively measures of the strength of coupling between protonation events. POOL is used to characterize the properties of natural enzymes that are necessary for efficient catalysis. Catalytic sites in proteins are characterized by networks of strongly coupled protonation states; these networks impart the necessary electrostatic and proton-transfer properties to the active residues in the first layer around the reacting substrate molecule(s). Typically these networks include first-, second-, and sometimes third-layer residues. POOL-predicted, multi-layer active sites with significant participation by distal residues have been verified experimentally by single-point site-directed mutagenesis and kinetics assays for Ps. putida nitrile hydratase, human phosphoglucose isomerase, E. coli replicative DNA polymerase Pol III, E. coli Y family DNA polymerase DinB, and E. coli ornithine transcarbamoylase. In designed enzymes, such as retroaldolases, the residue-specific input features to POOL – measures of the strength of coupling between protonation equilibria – rise as the enzymes evolve to higher rates of catalytic turnover. An approach to build these properties into the initial designs is proposed. Support or Funding Information NSF MCB-1517290 (MJO & PJB) and a National Institute of Justice Fellowship (TAC) This abstract is from the Experimental Biology 2018 Meeting. There is no full text article associated with this abstract published in The FASEB Journal." @default.
- W3170233488 created "2021-06-22" @default.
- W3170233488 creator A5015910317 @default.
- W3170233488 creator A5041030878 @default.
- W3170233488 creator A5075759144 @default.
- W3170233488 creator A5084024081 @default.
- W3170233488 date "2018-04-01" @default.
- W3170233488 modified "2023-09-25" @default.
- W3170233488 title "Electrostatic interactions in natural enzymes: What can we learn for enzyme design?" @default.
- W3170233488 doi "https://doi.org/10.1096/fasebj.2018.32.1_supplement.655.26" @default.
- W3170233488 hasPublicationYear "2018" @default.
- W3170233488 type Work @default.
- W3170233488 sameAs 3170233488 @default.
- W3170233488 citedByCount "0" @default.
- W3170233488 crossrefType "journal-article" @default.
- W3170233488 hasAuthorship W3170233488A5015910317 @default.
- W3170233488 hasAuthorship W3170233488A5041030878 @default.
- W3170233488 hasAuthorship W3170233488A5075759144 @default.
- W3170233488 hasAuthorship W3170233488A5084024081 @default.
- W3170233488 hasConcept C104317684 @default.
- W3170233488 hasConcept C143065580 @default.
- W3170233488 hasConcept C145148216 @default.
- W3170233488 hasConcept C178790620 @default.
- W3170233488 hasConcept C181199279 @default.
- W3170233488 hasConcept C185592680 @default.
- W3170233488 hasConcept C30095370 @default.
- W3170233488 hasConcept C41183919 @default.
- W3170233488 hasConcept C55493867 @default.
- W3170233488 hasConcept C56856141 @default.
- W3170233488 hasConcept C69118441 @default.
- W3170233488 hasConcept C71240020 @default.
- W3170233488 hasConcept C9418097 @default.
- W3170233488 hasConceptScore W3170233488C104317684 @default.
- W3170233488 hasConceptScore W3170233488C143065580 @default.
- W3170233488 hasConceptScore W3170233488C145148216 @default.
- W3170233488 hasConceptScore W3170233488C178790620 @default.
- W3170233488 hasConceptScore W3170233488C181199279 @default.
- W3170233488 hasConceptScore W3170233488C185592680 @default.
- W3170233488 hasConceptScore W3170233488C30095370 @default.
- W3170233488 hasConceptScore W3170233488C41183919 @default.
- W3170233488 hasConceptScore W3170233488C55493867 @default.
- W3170233488 hasConceptScore W3170233488C56856141 @default.
- W3170233488 hasConceptScore W3170233488C69118441 @default.
- W3170233488 hasConceptScore W3170233488C71240020 @default.
- W3170233488 hasConceptScore W3170233488C9418097 @default.
- W3170233488 hasFunder F4320306076 @default.
- W3170233488 hasIssue "S1" @default.
- W3170233488 hasLocation W31702334881 @default.
- W3170233488 hasOpenAccess W3170233488 @default.
- W3170233488 hasPrimaryLocation W31702334881 @default.
- W3170233488 hasRelatedWork W1527790485 @default.
- W3170233488 hasRelatedWork W1995509510 @default.
- W3170233488 hasRelatedWork W2011685425 @default.
- W3170233488 hasRelatedWork W2036380814 @default.
- W3170233488 hasRelatedWork W2125873032 @default.
- W3170233488 hasRelatedWork W2494851022 @default.
- W3170233488 hasRelatedWork W2515946539 @default.
- W3170233488 hasRelatedWork W2807983615 @default.
- W3170233488 hasRelatedWork W2890199835 @default.
- W3170233488 hasRelatedWork W4205416914 @default.
- W3170233488 hasVolume "32" @default.
- W3170233488 isParatext "false" @default.
- W3170233488 isRetracted "false" @default.
- W3170233488 magId "3170233488" @default.
- W3170233488 workType "article" @default.