Matches in SemOpenAlex for { <https://semopenalex.org/work/W3170358213> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3170358213 endingPage "1200" @default.
- W3170358213 startingPage "1194" @default.
- W3170358213 abstract "Presently, the field of Internet of Things (loT) has been employed in diverse applications like Smart Grid, Surveillance, Smart homes, and so on. Precision Agriculture is a concept of farm management which makes use of IoT and networking concepts to improve the crop health. Recognition of diseases from the plant images is an active research topic which makes use of machine learning (ML) approaches. This paper introduces an effective rice plant disease identification and classification model to identify the type of disease from infected rice plants. The proposed method aims to detect three rice plant diseases such as Bacterial leaf blight, Brown spot, and Leaf smut. The proposed method involves a set of different processes namely image acquisition, preprocessing, segmentation, feature extraction and classification. At the earlier stage, IoT devices will be used to capture the image and stores it with a cloud server, which executes the classification process. In the cloud, the rice plant images under preprocessing to improvise the quality of the image. Then, fuzzy c-means (FCM) clustering method is utilized for the segmentation of disease portion from a leaf image. Afterwards, feature extraction takes place under three kinds namely color, shape, and texture. Finally, probabilistic neural network (PNN) is applied for multi-class classification. A detailed experimental analysis ensured the effective classification performance of the proposed method under all the test images applied." @default.
- W3170358213 created "2021-06-22" @default.
- W3170358213 creator A5031326390 @default.
- W3170358213 creator A5055942511 @default.
- W3170358213 creator A5058883623 @default.
- W3170358213 date "2021-04-01" @default.
- W3170358213 modified "2023-09-26" @default.
- W3170358213 title "Fuzzy C-Means (FCM) Clustering with Probabilistic Neural Network (PNN) Model for Detection and Classification of Rice Plant Diseases in Internet of Things-Cloud Centric Precision Agriculture" @default.
- W3170358213 cites W1576391561 @default.
- W3170358213 cites W1965999533 @default.
- W3170358213 cites W1980474730 @default.
- W3170358213 cites W1985375443 @default.
- W3170358213 cites W2069717516 @default.
- W3170358213 cites W2107311958 @default.
- W3170358213 cites W2143238858 @default.
- W3170358213 cites W2560585535 @default.
- W3170358213 cites W2736026939 @default.
- W3170358213 doi "https://doi.org/10.1166/jctn.2021.9400" @default.
- W3170358213 hasPublicationYear "2021" @default.
- W3170358213 type Work @default.
- W3170358213 sameAs 3170358213 @default.
- W3170358213 citedByCount "2" @default.
- W3170358213 countsByYear W31703582132022 @default.
- W3170358213 countsByYear W31703582132023 @default.
- W3170358213 crossrefType "journal-article" @default.
- W3170358213 hasAuthorship W3170358213A5031326390 @default.
- W3170358213 hasAuthorship W3170358213A5055942511 @default.
- W3170358213 hasAuthorship W3170358213A5058883623 @default.
- W3170358213 hasConcept C111919701 @default.
- W3170358213 hasConcept C124101348 @default.
- W3170358213 hasConcept C150903083 @default.
- W3170358213 hasConcept C153180895 @default.
- W3170358213 hasConcept C154945302 @default.
- W3170358213 hasConcept C3019235130 @default.
- W3170358213 hasConcept C34736171 @default.
- W3170358213 hasConcept C41008148 @default.
- W3170358213 hasConcept C52622490 @default.
- W3170358213 hasConcept C73555534 @default.
- W3170358213 hasConcept C79974875 @default.
- W3170358213 hasConcept C86803240 @default.
- W3170358213 hasConcept C89600930 @default.
- W3170358213 hasConceptScore W3170358213C111919701 @default.
- W3170358213 hasConceptScore W3170358213C124101348 @default.
- W3170358213 hasConceptScore W3170358213C150903083 @default.
- W3170358213 hasConceptScore W3170358213C153180895 @default.
- W3170358213 hasConceptScore W3170358213C154945302 @default.
- W3170358213 hasConceptScore W3170358213C3019235130 @default.
- W3170358213 hasConceptScore W3170358213C34736171 @default.
- W3170358213 hasConceptScore W3170358213C41008148 @default.
- W3170358213 hasConceptScore W3170358213C52622490 @default.
- W3170358213 hasConceptScore W3170358213C73555534 @default.
- W3170358213 hasConceptScore W3170358213C79974875 @default.
- W3170358213 hasConceptScore W3170358213C86803240 @default.
- W3170358213 hasConceptScore W3170358213C89600930 @default.
- W3170358213 hasIssue "4" @default.
- W3170358213 hasLocation W31703582131 @default.
- W3170358213 hasOpenAccess W3170358213 @default.
- W3170358213 hasPrimaryLocation W31703582131 @default.
- W3170358213 hasRelatedWork W2122259043 @default.
- W3170358213 hasRelatedWork W2126100045 @default.
- W3170358213 hasRelatedWork W2154250574 @default.
- W3170358213 hasRelatedWork W2368651402 @default.
- W3170358213 hasRelatedWork W2391959412 @default.
- W3170358213 hasRelatedWork W2974852952 @default.
- W3170358213 hasRelatedWork W3003836766 @default.
- W3170358213 hasRelatedWork W3110278283 @default.
- W3170358213 hasRelatedWork W4253160043 @default.
- W3170358213 hasRelatedWork W4308093944 @default.
- W3170358213 hasVolume "18" @default.
- W3170358213 isParatext "false" @default.
- W3170358213 isRetracted "false" @default.
- W3170358213 magId "3170358213" @default.
- W3170358213 workType "article" @default.