Matches in SemOpenAlex for { <https://semopenalex.org/work/W3170405112> ?p ?o ?g. }
- W3170405112 abstract "Abstract With the advent of state of the art nature-inspired pure attention based models i.e. transformers, and their success in natural language processing (NLP), their extension to machine vision (MV) tasks was inevitable and much felt. Subsequently, vision transformers (ViTs) were introduced which are giving quite a challenge to the established deep learning based machine vision techniques. However, pure attention based models/architectures like transformers require huge data, large training times and large computational resources. Some recent works suggest that combinations of these two varied fields can prove to build systems which have the advantages of both these fields. Accordingly, this state of the art survey paper is introduced which hopefully will help readers get useful information about this interesting and potential research area. A gentle introduction to attention mechanisms is given, followed by a discussion of the popular attention based deep architectures. Subsequently, the major categories of the intersection of attention mechanisms and deep learning for machine vision (MV) based are discussed. Afterwards, the major algorithms, issues and trends within the scope of the paper are discussed." @default.
- W3170405112 created "2021-06-22" @default.
- W3170405112 creator A5033152381 @default.
- W3170405112 creator A5062676855 @default.
- W3170405112 creator A5083814424 @default.
- W3170405112 date "2021-06-04" @default.
- W3170405112 modified "2023-10-06" @default.
- W3170405112 title "Attention mechanisms and deep learning for machine vision: A survey of the state of the art" @default.
- W3170405112 cites W1514535095 @default.
- W3170405112 cites W1522734439 @default.
- W3170405112 cites W1821462560 @default.
- W3170405112 cites W1895577753 @default.
- W3170405112 cites W1942214758 @default.
- W3170405112 cites W2015861736 @default.
- W3170405112 cites W2019370496 @default.
- W3170405112 cites W2035372623 @default.
- W3170405112 cites W2039313011 @default.
- W3170405112 cites W2064675550 @default.
- W3170405112 cites W2103943262 @default.
- W3170405112 cites W2106115875 @default.
- W3170405112 cites W2108598243 @default.
- W3170405112 cites W2112796928 @default.
- W3170405112 cites W2122710056 @default.
- W3170405112 cites W2141399712 @default.
- W3170405112 cites W2172806452 @default.
- W3170405112 cites W2194775991 @default.
- W3170405112 cites W2212216676 @default.
- W3170405112 cites W2288514685 @default.
- W3170405112 cites W2442293398 @default.
- W3170405112 cites W2507373853 @default.
- W3170405112 cites W2550553598 @default.
- W3170405112 cites W2605793178 @default.
- W3170405112 cites W2619947201 @default.
- W3170405112 cites W2738672149 @default.
- W3170405112 cites W2745461083 @default.
- W3170405112 cites W2745497104 @default.
- W3170405112 cites W2753433004 @default.
- W3170405112 cites W2784025607 @default.
- W3170405112 cites W2795840542 @default.
- W3170405112 cites W2891726870 @default.
- W3170405112 cites W2904483377 @default.
- W3170405112 cites W2919115771 @default.
- W3170405112 cites W2922688322 @default.
- W3170405112 cites W2931316642 @default.
- W3170405112 cites W2942231644 @default.
- W3170405112 cites W2943964494 @default.
- W3170405112 cites W2950622378 @default.
- W3170405112 cites W2950761309 @default.
- W3170405112 cites W2950891598 @default.
- W3170405112 cites W2951559372 @default.
- W3170405112 cites W2952809536 @default.
- W3170405112 cites W2955425717 @default.
- W3170405112 cites W2955975704 @default.
- W3170405112 cites W2961193895 @default.
- W3170405112 cites W2962762462 @default.
- W3170405112 cites W2962835968 @default.
- W3170405112 cites W2962858109 @default.
- W3170405112 cites W2962964995 @default.
- W3170405112 cites W2963115613 @default.
- W3170405112 cites W2963341956 @default.
- W3170405112 cites W2963403868 @default.
- W3170405112 cites W2963420686 @default.
- W3170405112 cites W2963563276 @default.
- W3170405112 cites W2963584620 @default.
- W3170405112 cites W2963606038 @default.
- W3170405112 cites W2963828885 @default.
- W3170405112 cites W2964036520 @default.
- W3170405112 cites W2964145162 @default.
- W3170405112 cites W2970231061 @default.
- W3170405112 cites W2970608575 @default.
- W3170405112 cites W2995460200 @default.
- W3170405112 cites W2999653953 @default.
- W3170405112 cites W3012126539 @default.
- W3170405112 cites W3016265891 @default.
- W3170405112 cites W3019527251 @default.
- W3170405112 cites W3025165719 @default.
- W3170405112 cites W3030520226 @default.
- W3170405112 cites W3034312118 @default.
- W3170405112 cites W3035022492 @default.
- W3170405112 cites W3035565904 @default.
- W3170405112 cites W3043181422 @default.
- W3170405112 cites W3044220283 @default.
- W3170405112 cites W3094502228 @default.
- W3170405112 cites W3105054740 @default.
- W3170405112 cites W3105479157 @default.
- W3170405112 cites W3109319753 @default.
- W3170405112 cites W3112776202 @default.
- W3170405112 cites W3118608800 @default.
- W3170405112 cites W3119997354 @default.
- W3170405112 cites W3122238731 @default.
- W3170405112 cites W3122239467 @default.
- W3170405112 cites W3122484828 @default.
- W3170405112 cites W3127839344 @default.
- W3170405112 cites W3129247927 @default.
- W3170405112 cites W3129603602 @default.
- W3170405112 cites W3139049060 @default.
- W3170405112 cites W3139445856 @default.
- W3170405112 cites W3139773203 @default.
- W3170405112 cites W3141838378 @default.
- W3170405112 cites W3171516518 @default.