Matches in SemOpenAlex for { <https://semopenalex.org/work/W3170505588> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3170505588 endingPage "630" @default.
- W3170505588 startingPage "610" @default.
- W3170505588 abstract "Modeling cyber risks has been an important but challenging task in the domain of cyber security, which is mainly caused by the high dimensionality and heavy tails of risk patterns. Those obstacles have hindered the development of statistical modeling of the multivariate cyber risks. In this work, we propose a novel approach for modeling the multivariate cyber risks which relies on the deep learning and extreme value theory. The proposed model not only enjoys the high accurate point predictions via deep learning but also can provide the satisfactory high quantile predictions via extreme value theory. Both the simulation and empirical studies show that the proposed approach can model the multivariate cyber risks very well and provide satisfactory prediction performances." @default.
- W3170505588 created "2021-06-22" @default.
- W3170505588 creator A5009309112 @default.
- W3170505588 creator A5028975217 @default.
- W3170505588 creator A5037956269 @default.
- W3170505588 creator A5053968309 @default.
- W3170505588 creator A5055610808 @default.
- W3170505588 date "2021-06-04" @default.
- W3170505588 modified "2023-09-26" @default.
- W3170505588 title "Modeling multivariate cyber risks: deep learning dating extreme value theory" @default.
- W3170505588 cites W1966741850 @default.
- W3170505588 cites W1977664222 @default.
- W3170505588 cites W1977970167 @default.
- W3170505588 cites W2012649175 @default.
- W3170505588 cites W2016210396 @default.
- W3170505588 cites W2026430219 @default.
- W3170505588 cites W2064675550 @default.
- W3170505588 cites W2081290035 @default.
- W3170505588 cites W2135177937 @default.
- W3170505588 cites W2147767253 @default.
- W3170505588 cites W2157331557 @default.
- W3170505588 cites W2552664657 @default.
- W3170505588 cites W2604847698 @default.
- W3170505588 cites W2766799878 @default.
- W3170505588 cites W2793448306 @default.
- W3170505588 cites W2941986659 @default.
- W3170505588 cites W2947054660 @default.
- W3170505588 cites W2962940008 @default.
- W3170505588 cites W2964010366 @default.
- W3170505588 cites W2990495751 @default.
- W3170505588 cites W3004893834 @default.
- W3170505588 cites W3007066689 @default.
- W3170505588 cites W3108827348 @default.
- W3170505588 cites W4205947740 @default.
- W3170505588 doi "https://doi.org/10.1080/02664763.2021.1936468" @default.
- W3170505588 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36819078" @default.
- W3170505588 hasPublicationYear "2021" @default.
- W3170505588 type Work @default.
- W3170505588 sameAs 3170505588 @default.
- W3170505588 citedByCount "3" @default.
- W3170505588 countsByYear W31705055882022 @default.
- W3170505588 countsByYear W31705055882023 @default.
- W3170505588 crossrefType "journal-article" @default.
- W3170505588 hasAuthorship W3170505588A5009309112 @default.
- W3170505588 hasAuthorship W3170505588A5028975217 @default.
- W3170505588 hasAuthorship W3170505588A5037956269 @default.
- W3170505588 hasAuthorship W3170505588A5053968309 @default.
- W3170505588 hasAuthorship W3170505588A5055610808 @default.
- W3170505588 hasBestOaLocation W31705055882 @default.
- W3170505588 hasConcept C105795698 @default.
- W3170505588 hasConcept C108583219 @default.
- W3170505588 hasConcept C111030470 @default.
- W3170505588 hasConcept C118671147 @default.
- W3170505588 hasConcept C119857082 @default.
- W3170505588 hasConcept C124101348 @default.
- W3170505588 hasConcept C147581598 @default.
- W3170505588 hasConcept C149782125 @default.
- W3170505588 hasConcept C154945302 @default.
- W3170505588 hasConcept C161584116 @default.
- W3170505588 hasConcept C33923547 @default.
- W3170505588 hasConcept C41008148 @default.
- W3170505588 hasConceptScore W3170505588C105795698 @default.
- W3170505588 hasConceptScore W3170505588C108583219 @default.
- W3170505588 hasConceptScore W3170505588C111030470 @default.
- W3170505588 hasConceptScore W3170505588C118671147 @default.
- W3170505588 hasConceptScore W3170505588C119857082 @default.
- W3170505588 hasConceptScore W3170505588C124101348 @default.
- W3170505588 hasConceptScore W3170505588C147581598 @default.
- W3170505588 hasConceptScore W3170505588C149782125 @default.
- W3170505588 hasConceptScore W3170505588C154945302 @default.
- W3170505588 hasConceptScore W3170505588C161584116 @default.
- W3170505588 hasConceptScore W3170505588C33923547 @default.
- W3170505588 hasConceptScore W3170505588C41008148 @default.
- W3170505588 hasFunder F4320321001 @default.
- W3170505588 hasIssue "3" @default.
- W3170505588 hasLocation W31705055881 @default.
- W3170505588 hasLocation W31705055882 @default.
- W3170505588 hasLocation W31705055883 @default.
- W3170505588 hasLocation W31705055884 @default.
- W3170505588 hasOpenAccess W3170505588 @default.
- W3170505588 hasPrimaryLocation W31705055881 @default.
- W3170505588 hasRelatedWork W2922457425 @default.
- W3170505588 hasRelatedWork W3203839570 @default.
- W3170505588 hasRelatedWork W4223943233 @default.
- W3170505588 hasRelatedWork W4225161397 @default.
- W3170505588 hasRelatedWork W4250304930 @default.
- W3170505588 hasRelatedWork W4303856621 @default.
- W3170505588 hasRelatedWork W4309045103 @default.
- W3170505588 hasRelatedWork W4312200629 @default.
- W3170505588 hasRelatedWork W4360585206 @default.
- W3170505588 hasRelatedWork W4364306694 @default.
- W3170505588 hasVolume "50" @default.
- W3170505588 isParatext "false" @default.
- W3170505588 isRetracted "false" @default.
- W3170505588 magId "3170505588" @default.
- W3170505588 workType "article" @default.