Matches in SemOpenAlex for { <https://semopenalex.org/work/W3170562055> ?p ?o ?g. }
- W3170562055 endingPage "111291" @default.
- W3170562055 startingPage "111291" @default.
- W3170562055 abstract "We present a novel hybrid strategy based on machine learning to improve curvature estimation in the level-set method. The proposed inference system couples enhanced neural networks with standard numerical schemes to compute curvature more accurately. The core of our hybrid framework is a switching mechanism that relies on well established numerical techniques to gauge curvature. If the curvature magnitude is larger than a resolution-dependent threshold, it uses a neural network to yield a better approximation. Our networks are multilayer perceptrons fitted to synthetic data sets composed of sinusoidal- and circular-interface samples at various configurations. To reduce data set size and training complexity, we leverage the problem's characteristic symmetry and build our models on just half of the curvature spectrum. These savings lead to a powerful inference system able to outperform any of its numerical or neural component alone. Experiments with stationary, smooth interfaces show that our hybrid solver is notably superior to conventional numerical methods in coarse grids and along steep interface regions. Compared to prior research, we have observed outstanding gains in precision after training the regression model with data pairs from more than a single interface type and transforming data with specialized input preprocessing. In particular, our findings confirm that machine learning is a promising venue for reducing or removing mass loss in the level-set method." @default.
- W3170562055 created "2021-06-22" @default.
- W3170562055 creator A5011259499 @default.
- W3170562055 creator A5081112761 @default.
- W3170562055 date "2022-08-01" @default.
- W3170562055 modified "2023-09-30" @default.
- W3170562055 title "A hybrid inference system for improved curvature estimation in the level-set method using machine learning" @default.
- W3170562055 cites W1979313559 @default.
- W3170562055 cites W1981382127 @default.
- W3170562055 cites W1984202691 @default.
- W3170562055 cites W1984881776 @default.
- W3170562055 cites W1987271410 @default.
- W3170562055 cites W1991113069 @default.
- W3170562055 cites W1994140445 @default.
- W3170562055 cites W1998883579 @default.
- W3170562055 cites W2021970834 @default.
- W3170562055 cites W2023248330 @default.
- W3170562055 cites W2026512586 @default.
- W3170562055 cites W2029725852 @default.
- W3170562055 cites W2045545335 @default.
- W3170562055 cites W2047908429 @default.
- W3170562055 cites W2050514923 @default.
- W3170562055 cites W2058503731 @default.
- W3170562055 cites W2060863649 @default.
- W3170562055 cites W2066326804 @default.
- W3170562055 cites W2101560656 @default.
- W3170562055 cites W2112489823 @default.
- W3170562055 cites W2116040950 @default.
- W3170562055 cites W2116164205 @default.
- W3170562055 cites W2117717768 @default.
- W3170562055 cites W2123319606 @default.
- W3170562055 cites W2126381951 @default.
- W3170562055 cites W2147636550 @default.
- W3170562055 cites W2148666448 @default.
- W3170562055 cites W2158261014 @default.
- W3170562055 cites W2161731707 @default.
- W3170562055 cites W2330586106 @default.
- W3170562055 cites W2404618390 @default.
- W3170562055 cites W2444582403 @default.
- W3170562055 cites W2493916176 @default.
- W3170562055 cites W2505225485 @default.
- W3170562055 cites W2605570189 @default.
- W3170562055 cites W2609170234 @default.
- W3170562055 cites W2617276396 @default.
- W3170562055 cites W2763699499 @default.
- W3170562055 cites W2768535327 @default.
- W3170562055 cites W2806457513 @default.
- W3170562055 cites W2883948727 @default.
- W3170562055 cites W2939277582 @default.
- W3170562055 cites W2971869613 @default.
- W3170562055 cites W2983473181 @default.
- W3170562055 cites W2999075536 @default.
- W3170562055 cites W3004594394 @default.
- W3170562055 cites W3101260193 @default.
- W3170562055 cites W3103722330 @default.
- W3170562055 doi "https://doi.org/10.1016/j.jcp.2022.111291" @default.
- W3170562055 hasPublicationYear "2022" @default.
- W3170562055 type Work @default.
- W3170562055 sameAs 3170562055 @default.
- W3170562055 citedByCount "5" @default.
- W3170562055 countsByYear W31705620552022 @default.
- W3170562055 countsByYear W31705620552023 @default.
- W3170562055 crossrefType "journal-article" @default.
- W3170562055 hasAuthorship W3170562055A5011259499 @default.
- W3170562055 hasAuthorship W3170562055A5081112761 @default.
- W3170562055 hasBestOaLocation W31705620551 @default.
- W3170562055 hasConcept C11413529 @default.
- W3170562055 hasConcept C119857082 @default.
- W3170562055 hasConcept C153083717 @default.
- W3170562055 hasConcept C154945302 @default.
- W3170562055 hasConcept C195065555 @default.
- W3170562055 hasConcept C2524010 @default.
- W3170562055 hasConcept C2776214188 @default.
- W3170562055 hasConcept C33923547 @default.
- W3170562055 hasConcept C41008148 @default.
- W3170562055 hasConcept C50644808 @default.
- W3170562055 hasConcept C60908668 @default.
- W3170562055 hasConceptScore W3170562055C11413529 @default.
- W3170562055 hasConceptScore W3170562055C119857082 @default.
- W3170562055 hasConceptScore W3170562055C153083717 @default.
- W3170562055 hasConceptScore W3170562055C154945302 @default.
- W3170562055 hasConceptScore W3170562055C195065555 @default.
- W3170562055 hasConceptScore W3170562055C2524010 @default.
- W3170562055 hasConceptScore W3170562055C2776214188 @default.
- W3170562055 hasConceptScore W3170562055C33923547 @default.
- W3170562055 hasConceptScore W3170562055C41008148 @default.
- W3170562055 hasConceptScore W3170562055C50644808 @default.
- W3170562055 hasConceptScore W3170562055C60908668 @default.
- W3170562055 hasLocation W31705620551 @default.
- W3170562055 hasLocation W31705620552 @default.
- W3170562055 hasOpenAccess W3170562055 @default.
- W3170562055 hasPrimaryLocation W31705620551 @default.
- W3170562055 hasRelatedWork W1501213224 @default.
- W3170562055 hasRelatedWork W2783038087 @default.
- W3170562055 hasRelatedWork W3185179407 @default.
- W3170562055 hasRelatedWork W4206558754 @default.
- W3170562055 hasRelatedWork W4220975826 @default.
- W3170562055 hasRelatedWork W4225307033 @default.