Matches in SemOpenAlex for { <https://semopenalex.org/work/W3170655221> ?p ?o ?g. }
- W3170655221 endingPage "7272" @default.
- W3170655221 startingPage "7262" @default.
- W3170655221 abstract "The prediction of possible future incidents or accidents and the efficiency assessment of the Occupational Safety and Health (OSH) interventions are essential for the effective protection of healthcare workers, as the occupational risks in their workplace are multiple and diverse. Machine learning algorithms have been utilized for classifying post-incident and post-accident data into the following 5 classes of events: Needlestick/Cut, Falling, Incident, Accident, and Safety. 476 event reports from Metaxa Cancer Hospital (Greece), during 2014-2019, were used to train the machine learning models. The developed models showed high predictive performance, with area under the curve range 0.950-0.990 and average accuracy of 93% on the 10-fold cross set, compared to the safety engineer’s study reports. The proposed DSS model can contribute to the prediction of incidents or accidents and efficiency evaluation of OSH interventions." @default.
- W3170655221 created "2021-06-22" @default.
- W3170655221 creator A5015467128 @default.
- W3170655221 creator A5016776217 @default.
- W3170655221 creator A5036698183 @default.
- W3170655221 creator A5068393513 @default.
- W3170655221 date "2021-06-09" @default.
- W3170655221 modified "2023-10-17" @default.
- W3170655221 title "Utilization of Machine Learning in Supporting Occupational Safety and Health Decisions in Hospital Workplace" @default.
- W3170655221 cites W1513896343 @default.
- W3170655221 cites W1584325523 @default.
- W3170655221 cites W1958478380 @default.
- W3170655221 cites W1975851530 @default.
- W3170655221 cites W2000145678 @default.
- W3170655221 cites W2031137656 @default.
- W3170655221 cites W2048368339 @default.
- W3170655221 cites W2050801533 @default.
- W3170655221 cites W2079831390 @default.
- W3170655221 cites W2080012489 @default.
- W3170655221 cites W2157825442 @default.
- W3170655221 cites W2158698691 @default.
- W3170655221 cites W2301246547 @default.
- W3170655221 cites W2414339376 @default.
- W3170655221 cites W2560521628 @default.
- W3170655221 cites W2574507249 @default.
- W3170655221 cites W2584997055 @default.
- W3170655221 cites W2589095164 @default.
- W3170655221 cites W2608116365 @default.
- W3170655221 cites W2778611244 @default.
- W3170655221 cites W2785306930 @default.
- W3170655221 cites W2789786301 @default.
- W3170655221 cites W2790796382 @default.
- W3170655221 cites W2889348305 @default.
- W3170655221 cites W2890616297 @default.
- W3170655221 cites W2898712095 @default.
- W3170655221 cites W2900009847 @default.
- W3170655221 cites W2906274736 @default.
- W3170655221 cites W2913610832 @default.
- W3170655221 cites W2914403389 @default.
- W3170655221 cites W2939650878 @default.
- W3170655221 cites W2979822009 @default.
- W3170655221 cites W2996283780 @default.
- W3170655221 cites W3033793604 @default.
- W3170655221 cites W3038342226 @default.
- W3170655221 cites W3041062794 @default.
- W3170655221 cites W3045031900 @default.
- W3170655221 cites W3105958842 @default.
- W3170655221 doi "https://doi.org/10.48084/etasr.4205" @default.
- W3170655221 hasPublicationYear "2021" @default.
- W3170655221 type Work @default.
- W3170655221 sameAs 3170655221 @default.
- W3170655221 citedByCount "4" @default.
- W3170655221 countsByYear W31706552212021 @default.
- W3170655221 countsByYear W31706552212022 @default.
- W3170655221 crossrefType "journal-article" @default.
- W3170655221 hasAuthorship W3170655221A5015467128 @default.
- W3170655221 hasAuthorship W3170655221A5016776217 @default.
- W3170655221 hasAuthorship W3170655221A5036698183 @default.
- W3170655221 hasAuthorship W3170655221A5068393513 @default.
- W3170655221 hasBestOaLocation W31706552211 @default.
- W3170655221 hasConcept C127413603 @default.
- W3170655221 hasConcept C142724271 @default.
- W3170655221 hasConcept C159110408 @default.
- W3170655221 hasConcept C160735492 @default.
- W3170655221 hasConcept C162324750 @default.
- W3170655221 hasConcept C187155963 @default.
- W3170655221 hasConcept C206713868 @default.
- W3170655221 hasConcept C27415008 @default.
- W3170655221 hasConcept C2779079380 @default.
- W3170655221 hasConcept C2779328685 @default.
- W3170655221 hasConcept C41008148 @default.
- W3170655221 hasConcept C50522688 @default.
- W3170655221 hasConcept C71924100 @default.
- W3170655221 hasConcept C77595967 @default.
- W3170655221 hasConcept C99454951 @default.
- W3170655221 hasConceptScore W3170655221C127413603 @default.
- W3170655221 hasConceptScore W3170655221C142724271 @default.
- W3170655221 hasConceptScore W3170655221C159110408 @default.
- W3170655221 hasConceptScore W3170655221C160735492 @default.
- W3170655221 hasConceptScore W3170655221C162324750 @default.
- W3170655221 hasConceptScore W3170655221C187155963 @default.
- W3170655221 hasConceptScore W3170655221C206713868 @default.
- W3170655221 hasConceptScore W3170655221C27415008 @default.
- W3170655221 hasConceptScore W3170655221C2779079380 @default.
- W3170655221 hasConceptScore W3170655221C2779328685 @default.
- W3170655221 hasConceptScore W3170655221C41008148 @default.
- W3170655221 hasConceptScore W3170655221C50522688 @default.
- W3170655221 hasConceptScore W3170655221C71924100 @default.
- W3170655221 hasConceptScore W3170655221C77595967 @default.
- W3170655221 hasConceptScore W3170655221C99454951 @default.
- W3170655221 hasIssue "3" @default.
- W3170655221 hasLocation W31706552211 @default.
- W3170655221 hasOpenAccess W3170655221 @default.
- W3170655221 hasPrimaryLocation W31706552211 @default.
- W3170655221 hasRelatedWork W2044840779 @default.
- W3170655221 hasRelatedWork W2061443380 @default.
- W3170655221 hasRelatedWork W2064865453 @default.
- W3170655221 hasRelatedWork W2092505366 @default.