Matches in SemOpenAlex for { <https://semopenalex.org/work/W3170702380> ?p ?o ?g. }
- W3170702380 endingPage "126506" @default.
- W3170702380 startingPage "126506" @default.
- W3170702380 abstract "The nature of streamflow in the basins is stochastic and complex making it difficult to make an accurate prediction about the future river flows. Recently, artificial neural-based deep learning models with a nonlinear structure have become predominant in water engineering forecasting problems such as river flow predictions. In this study, we investigate the potential of Singular Spectral Analysis (SSA), Seasonal-Trend decomposition using Loess (STL) and attribute selection pre-processing approaches with the neural network methods in predicting monthly river streamflows in the Nallihan stream, Turkey. Antecedent measured streamflow, precipitation, relative humidity and temperature data between the years 1996 and 2016 from the observing stations in the basin boundaries were used as model inputs under different scenarios using the correlations between the past measured variables, to predict one-step-ahead flow data. To compare the newer hybrid model performances; evaluation metrics including coefficient of determination (R2), Nash-Sutcliffe efficiency (NE), Willmott’s Index of Agreement (WI), root mean square error, mean absolute error together with judicious plots; scatter plot, time series and the Taylor diagrams were utilized. The developed hybrid SSA-based models registered higher accuracy than other standalone Neural Networks models without pre-processing approaches. The R2 for SSA-based models were higher ranging from 0.8300 to 0.9105, and the largest R2 = 0.9105 was registered by the proposed SSA-ANN model. SSA-ANN models have also the highest NE and WI index values: 0.9045 and 0.9764, respectively. The outcomes revealed that based on NE, the SSA decomposition increased the monthly streamflow prediction accuracy by 24.11%, 18.40% and 5.11% of respective ANN, CNN and LSTM methods. The SSA pre-processing approach is able to unveil the embedded streamflow characteristics and could be further applied in basins with similar characteristics to attain more accurate predictions of river flows." @default.
- W3170702380 created "2021-06-22" @default.
- W3170702380 creator A5012081999 @default.
- W3170702380 creator A5044840244 @default.
- W3170702380 creator A5054137965 @default.
- W3170702380 creator A5071123729 @default.
- W3170702380 date "2021-09-01" @default.
- W3170702380 modified "2023-10-12" @default.
- W3170702380 title "Artificial intelligence modelling integrated with Singular Spectral analysis and Seasonal-Trend decomposition using Loess approaches for streamflow predictions" @default.
- W3170702380 cites W1483959923 @default.
- W3170702380 cites W1507231250 @default.
- W3170702380 cites W1998317550 @default.
- W3170702380 cites W1999461467 @default.
- W3170702380 cites W2003566597 @default.
- W3170702380 cites W2011301426 @default.
- W3170702380 cites W2012883379 @default.
- W3170702380 cites W2016210396 @default.
- W3170702380 cites W2020236162 @default.
- W3170702380 cites W2024648098 @default.
- W3170702380 cites W2037460094 @default.
- W3170702380 cites W2047884674 @default.
- W3170702380 cites W2056532744 @default.
- W3170702380 cites W2062434079 @default.
- W3170702380 cites W2064748704 @default.
- W3170702380 cites W2066996619 @default.
- W3170702380 cites W2069812460 @default.
- W3170702380 cites W2078340250 @default.
- W3170702380 cites W2100548516 @default.
- W3170702380 cites W2102148524 @default.
- W3170702380 cites W2111286455 @default.
- W3170702380 cites W2115766178 @default.
- W3170702380 cites W2119387367 @default.
- W3170702380 cites W2138763184 @default.
- W3170702380 cites W2144717556 @default.
- W3170702380 cites W2147746661 @default.
- W3170702380 cites W2157839873 @default.
- W3170702380 cites W2256317226 @default.
- W3170702380 cites W2274744025 @default.
- W3170702380 cites W2276221726 @default.
- W3170702380 cites W2328399833 @default.
- W3170702380 cites W2331446345 @default.
- W3170702380 cites W2441507532 @default.
- W3170702380 cites W2471623547 @default.
- W3170702380 cites W2496120601 @default.
- W3170702380 cites W2518675717 @default.
- W3170702380 cites W2536008880 @default.
- W3170702380 cites W2581811121 @default.
- W3170702380 cites W2592903613 @default.
- W3170702380 cites W2627156000 @default.
- W3170702380 cites W2755116070 @default.
- W3170702380 cites W2756373030 @default.
- W3170702380 cites W2783204403 @default.
- W3170702380 cites W2798878556 @default.
- W3170702380 cites W2800819102 @default.
- W3170702380 cites W2808220546 @default.
- W3170702380 cites W2896144795 @default.
- W3170702380 cites W2896827527 @default.
- W3170702380 cites W2902790723 @default.
- W3170702380 cites W2917765645 @default.
- W3170702380 cites W2919115771 @default.
- W3170702380 cites W2928048063 @default.
- W3170702380 cites W2946998124 @default.
- W3170702380 cites W2979905581 @default.
- W3170702380 cites W2983352457 @default.
- W3170702380 cites W2990338582 @default.
- W3170702380 cites W2995748937 @default.
- W3170702380 cites W2998772831 @default.
- W3170702380 cites W3003741609 @default.
- W3170702380 cites W3004990671 @default.
- W3170702380 cites W3010986668 @default.
- W3170702380 cites W3012451118 @default.
- W3170702380 cites W3019878414 @default.
- W3170702380 cites W3025296742 @default.
- W3170702380 cites W3026717820 @default.
- W3170702380 cites W3037111239 @default.
- W3170702380 cites W3047298021 @default.
- W3170702380 cites W3098950295 @default.
- W3170702380 cites W3099487920 @default.
- W3170702380 cites W3126940313 @default.
- W3170702380 cites W4297709905 @default.
- W3170702380 cites W588320544 @default.
- W3170702380 doi "https://doi.org/10.1016/j.jhydrol.2021.126506" @default.
- W3170702380 hasPublicationYear "2021" @default.
- W3170702380 type Work @default.
- W3170702380 sameAs 3170702380 @default.
- W3170702380 citedByCount "51" @default.
- W3170702380 countsByYear W31707023802021 @default.
- W3170702380 countsByYear W31707023802022 @default.
- W3170702380 countsByYear W31707023802023 @default.
- W3170702380 crossrefType "journal-article" @default.
- W3170702380 hasAuthorship W3170702380A5012081999 @default.
- W3170702380 hasAuthorship W3170702380A5044840244 @default.
- W3170702380 hasAuthorship W3170702380A5054137965 @default.
- W3170702380 hasAuthorship W3170702380A5071123729 @default.
- W3170702380 hasConcept C105795698 @default.
- W3170702380 hasConcept C107054158 @default.
- W3170702380 hasConcept C11413529 @default.
- W3170702380 hasConcept C114793014 @default.