Matches in SemOpenAlex for { <https://semopenalex.org/work/W3170805887> ?p ?o ?g. }
- W3170805887 endingPage "107561" @default.
- W3170805887 startingPage "107561" @default.
- W3170805887 abstract "When ambulances’ turnaround time (TT) in emergency departments is prolonged, it not only affects the victim severely but also causes unavailability of resources in emergency medical services (EMSs) and, consequently, leaves a locality unprotected. This problem may worsen with abnormal situations, e.g., the current coronavirus disease 2019 (COVID-19) pandemic. Taking this into consideration, this paper presents a first study on the COVID-19 impact on ambulances’ TT by analyzing historical data from the Departmental Fire and Rescue Service of the Doubs (SDIS 25), in France, for three hospitals. Because the TTs of SDIS 25 ambulances increased, this paper also calculated and analyzed the number of breakdowns in services, which augmented due to shortage of ambulances that return on service in time. It is, therefore, vital to have a decision-support tool to better reallocate resources by knowing the time EMSs ambulances and personnel will be in use. Thus, this paper proposes a novel two-stage methodology based on machine learning (ML) models to forecast the TT of each ambulance in a given time and hospital. The first stage uses a multivariate model of regularly spaced time series to predict the average TT (AvTT) per hour, which considers temporal variables and external ones (e.g., COVID-19 statistics, weather data). The second stage utilizes a multivariate irregularly spaced time series model, which considers temporal variables of each ambulance departure, type of intervention, external variables, and the previously predicted AvTT as inputs. Four state-of-the-art ML models were considered in this paper, namely, Light Gradient Boosted Machine, Multilayer Perceptron, Long Short-Term Memory, and Prophet. As shown in the results, the proposed methodology provided remarkable results for practical purposes. The AvTT accuracies obtained for the three hospitals were 90.16%, 97.02%, and 93.09%. And the TT accuracies were 74.42%, 86.63%, and 76.67%, all with an error margin of ±10 min." @default.
- W3170805887 created "2021-06-22" @default.
- W3170805887 creator A5033093688 @default.
- W3170805887 creator A5044677708 @default.
- W3170805887 creator A5068017939 @default.
- W3170805887 creator A5073628743 @default.
- W3170805887 creator A5090908212 @default.
- W3170805887 date "2021-09-01" @default.
- W3170805887 modified "2023-09-25" @default.
- W3170805887 title "Machine learning-based forecasting of firemen ambulances’ turnaround time in hospitals, considering the COVID-19 impact" @default.
- W3170805887 cites W1485256945 @default.
- W3170805887 cites W1682640185 @default.
- W3170805887 cites W2002442112 @default.
- W3170805887 cites W2042506099 @default.
- W3170805887 cites W2043352576 @default.
- W3170805887 cites W2057679506 @default.
- W3170805887 cites W2064675550 @default.
- W3170805887 cites W2066428833 @default.
- W3170805887 cites W2085987290 @default.
- W3170805887 cites W2107629864 @default.
- W3170805887 cites W2131878660 @default.
- W3170805887 cites W2132059703 @default.
- W3170805887 cites W2340613451 @default.
- W3170805887 cites W2485729092 @default.
- W3170805887 cites W2812039334 @default.
- W3170805887 cites W3001118548 @default.
- W3170805887 cites W3001465255 @default.
- W3170805887 cites W3003573988 @default.
- W3170805887 cites W3003668884 @default.
- W3170805887 cites W3006007867 @default.
- W3170805887 cites W3010131837 @default.
- W3170805887 cites W3010223921 @default.
- W3170805887 cites W3011508296 @default.
- W3170805887 cites W3013649595 @default.
- W3170805887 cites W3015226707 @default.
- W3170805887 cites W3022714712 @default.
- W3170805887 cites W3023926653 @default.
- W3170805887 cites W3032562869 @default.
- W3170805887 cites W3039163263 @default.
- W3170805887 cites W3040458414 @default.
- W3170805887 cites W3047574096 @default.
- W3170805887 cites W3059916487 @default.
- W3170805887 cites W3115894432 @default.
- W3170805887 cites W3120117568 @default.
- W3170805887 cites W3127777396 @default.
- W3170805887 cites W3159901390 @default.
- W3170805887 doi "https://doi.org/10.1016/j.asoc.2021.107561" @default.
- W3170805887 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34899108" @default.
- W3170805887 hasPublicationYear "2021" @default.
- W3170805887 type Work @default.
- W3170805887 sameAs 3170805887 @default.
- W3170805887 citedByCount "9" @default.
- W3170805887 countsByYear W31708058872022 @default.
- W3170805887 countsByYear W31708058872023 @default.
- W3170805887 crossrefType "journal-article" @default.
- W3170805887 hasAuthorship W3170805887A5033093688 @default.
- W3170805887 hasAuthorship W3170805887A5044677708 @default.
- W3170805887 hasAuthorship W3170805887A5068017939 @default.
- W3170805887 hasAuthorship W3170805887A5073628743 @default.
- W3170805887 hasAuthorship W3170805887A5090908212 @default.
- W3170805887 hasBestOaLocation W31708058871 @default.
- W3170805887 hasConcept C105795698 @default.
- W3170805887 hasConcept C119857082 @default.
- W3170805887 hasConcept C127413603 @default.
- W3170805887 hasConcept C138885662 @default.
- W3170805887 hasConcept C142724271 @default.
- W3170805887 hasConcept C144133560 @default.
- W3170805887 hasConcept C151406439 @default.
- W3170805887 hasConcept C161584116 @default.
- W3170805887 hasConcept C162853370 @default.
- W3170805887 hasConcept C176553487 @default.
- W3170805887 hasConcept C194051981 @default.
- W3170805887 hasConcept C21547014 @default.
- W3170805887 hasConcept C2778137410 @default.
- W3170805887 hasConcept C2779134260 @default.
- W3170805887 hasConcept C2780378061 @default.
- W3170805887 hasConcept C2780505938 @default.
- W3170805887 hasConcept C3008058167 @default.
- W3170805887 hasConcept C33923547 @default.
- W3170805887 hasConcept C41008148 @default.
- W3170805887 hasConcept C41895202 @default.
- W3170805887 hasConcept C42475967 @default.
- W3170805887 hasConcept C524204448 @default.
- W3170805887 hasConcept C545542383 @default.
- W3170805887 hasConcept C71924100 @default.
- W3170805887 hasConceptScore W3170805887C105795698 @default.
- W3170805887 hasConceptScore W3170805887C119857082 @default.
- W3170805887 hasConceptScore W3170805887C127413603 @default.
- W3170805887 hasConceptScore W3170805887C138885662 @default.
- W3170805887 hasConceptScore W3170805887C142724271 @default.
- W3170805887 hasConceptScore W3170805887C144133560 @default.
- W3170805887 hasConceptScore W3170805887C151406439 @default.
- W3170805887 hasConceptScore W3170805887C161584116 @default.
- W3170805887 hasConceptScore W3170805887C162853370 @default.
- W3170805887 hasConceptScore W3170805887C176553487 @default.
- W3170805887 hasConceptScore W3170805887C194051981 @default.
- W3170805887 hasConceptScore W3170805887C21547014 @default.
- W3170805887 hasConceptScore W3170805887C2778137410 @default.