Matches in SemOpenAlex for { <https://semopenalex.org/work/W3170831634> ?p ?o ?g. }
- W3170831634 abstract "As the complexity of microfluidic experiments and the associated image data volumes scale, traditional feature extraction approaches begin to struggle at both detection and analysis pipeline throughput. Deep-neural networks trained to detect certain objects are rapidly emerging as data gathering tools that can either match or outperform the analysis capabilities of the conventional methods used in microfluidic emulsion science. We demonstrate that various convolutional neural networks can be trained and used as droplet detectors in a wide variety of microfluidic systems. A generalized microfluidic droplet training and validation dataset was developed and used to tune two versions of the You Only Look Once (YOLOv3/YOLOv5) model as well as Faster R-CNN. Each model was used to detect droplets in mono- and polydisperse flow cell systems. The detection accuracy of each model shows excellent statistical symmetry with an implementation of the Hough transform as well as relevant ImageJ plugins. The models were successfully used as droplet detectors in non-microfluidic micrograph observations, where these data were not included in the training set. The models outperformed the traditional methods in more complex, porous-media simulating chip architectures with a significant speedup to per-frame analysis times. Implementing these neural networks as the primary detectors in these microfluidic systems not only makes the data pipelining more efficient, but opens the door for live detection and development of autonomous microfluidic experimental platforms. <br>" @default.
- W3170831634 created "2021-06-22" @default.
- W3170831634 creator A5011830040 @default.
- W3170831634 creator A5036320745 @default.
- W3170831634 creator A5072021665 @default.
- W3170831634 creator A5073485561 @default.
- W3170831634 creator A5087421489 @default.
- W3170831634 date "2021-06-02" @default.
- W3170831634 modified "2023-09-27" @default.
- W3170831634 title "Microfluidic Droplet Detection via Region-Based and Single-Pass Convolutional Neural Networks with Comparison to Conventional Image Analysis Methodologies" @default.
- W3170831634 cites W1689909837 @default.
- W3170831634 cites W1861492603 @default.
- W3170831634 cites W1905036359 @default.
- W3170831634 cites W1910197149 @default.
- W3170831634 cites W1922788027 @default.
- W3170831634 cites W1925599792 @default.
- W3170831634 cites W1975330940 @default.
- W3170831634 cites W1978157309 @default.
- W3170831634 cites W1988218035 @default.
- W3170831634 cites W2004491626 @default.
- W3170831634 cites W2016614290 @default.
- W3170831634 cites W2027794151 @default.
- W3170831634 cites W2033614532 @default.
- W3170831634 cites W2041625018 @default.
- W3170831634 cites W2059087719 @default.
- W3170831634 cites W2107634464 @default.
- W3170831634 cites W2111303024 @default.
- W3170831634 cites W2119475668 @default.
- W3170831634 cites W2120202249 @default.
- W3170831634 cites W2125885642 @default.
- W3170831634 cites W2126671215 @default.
- W3170831634 cites W2133774584 @default.
- W3170831634 cites W2140099710 @default.
- W3170831634 cites W2142423992 @default.
- W3170831634 cites W2164944168 @default.
- W3170831634 cites W2189805289 @default.
- W3170831634 cites W2224354397 @default.
- W3170831634 cites W2234666690 @default.
- W3170831634 cites W2535035853 @default.
- W3170831634 cites W2560469981 @default.
- W3170831634 cites W2592107721 @default.
- W3170831634 cites W2617378503 @default.
- W3170831634 cites W2751903978 @default.
- W3170831634 cites W2754511756 @default.
- W3170831634 cites W2787381210 @default.
- W3170831634 cites W2795925101 @default.
- W3170831634 cites W2803859791 @default.
- W3170831634 cites W2811106513 @default.
- W3170831634 cites W2811144984 @default.
- W3170831634 cites W2915021414 @default.
- W3170831634 cites W2919115771 @default.
- W3170831634 cites W2947371353 @default.
- W3170831634 cites W2951509347 @default.
- W3170831634 cites W2966496155 @default.
- W3170831634 cites W2975634117 @default.
- W3170831634 cites W2990066291 @default.
- W3170831634 cites W2991034591 @default.
- W3170831634 cites W3021588553 @default.
- W3170831634 cites W3045623435 @default.
- W3170831634 cites W3091926661 @default.
- W3170831634 cites W3182483877 @default.
- W3170831634 cites W3202281305 @default.
- W3170831634 doi "https://doi.org/10.26434/chemrxiv.14709477.v1" @default.
- W3170831634 hasPublicationYear "2021" @default.
- W3170831634 type Work @default.
- W3170831634 sameAs 3170831634 @default.
- W3170831634 citedByCount "0" @default.
- W3170831634 crossrefType "posted-content" @default.
- W3170831634 hasAuthorship W3170831634A5011830040 @default.
- W3170831634 hasAuthorship W3170831634A5036320745 @default.
- W3170831634 hasAuthorship W3170831634A5072021665 @default.
- W3170831634 hasAuthorship W3170831634A5073485561 @default.
- W3170831634 hasAuthorship W3170831634A5087421489 @default.
- W3170831634 hasBestOaLocation W31708316341 @default.
- W3170831634 hasConcept C108583219 @default.
- W3170831634 hasConcept C153180895 @default.
- W3170831634 hasConcept C154945302 @default.
- W3170831634 hasConcept C171250308 @default.
- W3170831634 hasConcept C173608175 @default.
- W3170831634 hasConcept C192562407 @default.
- W3170831634 hasConcept C199360897 @default.
- W3170831634 hasConcept C41008148 @default.
- W3170831634 hasConcept C43521106 @default.
- W3170831634 hasConcept C50644808 @default.
- W3170831634 hasConcept C68339613 @default.
- W3170831634 hasConcept C76155785 @default.
- W3170831634 hasConcept C81363708 @default.
- W3170831634 hasConcept C8673954 @default.
- W3170831634 hasConcept C94915269 @default.
- W3170831634 hasConceptScore W3170831634C108583219 @default.
- W3170831634 hasConceptScore W3170831634C153180895 @default.
- W3170831634 hasConceptScore W3170831634C154945302 @default.
- W3170831634 hasConceptScore W3170831634C171250308 @default.
- W3170831634 hasConceptScore W3170831634C173608175 @default.
- W3170831634 hasConceptScore W3170831634C192562407 @default.
- W3170831634 hasConceptScore W3170831634C199360897 @default.
- W3170831634 hasConceptScore W3170831634C41008148 @default.
- W3170831634 hasConceptScore W3170831634C43521106 @default.
- W3170831634 hasConceptScore W3170831634C50644808 @default.
- W3170831634 hasConceptScore W3170831634C68339613 @default.