Matches in SemOpenAlex for { <https://semopenalex.org/work/W3170833801> ?p ?o ?g. }
- W3170833801 endingPage "114269" @default.
- W3170833801 startingPage "114269" @default.
- W3170833801 abstract "In this paper, we propose a hybrid machine learning method to predict the thermal conductivity of polymeric nanocomposites (PNCs). Therefore, a combination of artificial neural network (ANN) and particle swarm optimization (PSO) is applied to estimate the relationship between variable input and output parameters. The ANN is used for modeling the composite while PSO improves the prediction performance through an optimized global minimum search. We select the thermal conductivity of the fibers and the matrix, the kapitza resistance, volume fraction and aspect ratio as input parameters. The output is the macroscopic (homogenized) thermal conductivity of the composite. The results show that the PSO significantly improves the predictive ability of this hybrid intelligent algorithm, which outperforms traditional neural networks." @default.
- W3170833801 created "2021-06-22" @default.
- W3170833801 creator A5050348381 @default.
- W3170833801 creator A5065190539 @default.
- W3170833801 creator A5073889239 @default.
- W3170833801 date "2021-10-01" @default.
- W3170833801 modified "2023-10-10" @default.
- W3170833801 title "A stochastic multiscale method for the prediction of the thermal conductivity of Polymer nanocomposites through hybrid machine learning algorithms" @default.
- W3170833801 cites W1967010736 @default.
- W3170833801 cites W1973343755 @default.
- W3170833801 cites W2004019879 @default.
- W3170833801 cites W2015928143 @default.
- W3170833801 cites W2018293865 @default.
- W3170833801 cites W2018725858 @default.
- W3170833801 cites W2022740958 @default.
- W3170833801 cites W2033872649 @default.
- W3170833801 cites W2036987022 @default.
- W3170833801 cites W2044721184 @default.
- W3170833801 cites W2045503439 @default.
- W3170833801 cites W2055591121 @default.
- W3170833801 cites W2062527313 @default.
- W3170833801 cites W2072954894 @default.
- W3170833801 cites W2078045457 @default.
- W3170833801 cites W2085873904 @default.
- W3170833801 cites W2090972687 @default.
- W3170833801 cites W2091324924 @default.
- W3170833801 cites W2111924465 @default.
- W3170833801 cites W2141992264 @default.
- W3170833801 cites W2143327749 @default.
- W3170833801 cites W2151554678 @default.
- W3170833801 cites W2152195021 @default.
- W3170833801 cites W2158418834 @default.
- W3170833801 cites W2310230662 @default.
- W3170833801 cites W2430176502 @default.
- W3170833801 cites W2551243472 @default.
- W3170833801 cites W2765248084 @default.
- W3170833801 cites W2888441390 @default.
- W3170833801 cites W2895860178 @default.
- W3170833801 cites W2897540504 @default.
- W3170833801 cites W2897923334 @default.
- W3170833801 cites W2907860087 @default.
- W3170833801 cites W2910382316 @default.
- W3170833801 cites W2912052484 @default.
- W3170833801 cites W2964504795 @default.
- W3170833801 cites W2996362545 @default.
- W3170833801 cites W3099279560 @default.
- W3170833801 doi "https://doi.org/10.1016/j.compstruct.2021.114269" @default.
- W3170833801 hasPublicationYear "2021" @default.
- W3170833801 type Work @default.
- W3170833801 sameAs 3170833801 @default.
- W3170833801 citedByCount "42" @default.
- W3170833801 countsByYear W31708338012021 @default.
- W3170833801 countsByYear W31708338012022 @default.
- W3170833801 countsByYear W31708338012023 @default.
- W3170833801 crossrefType "journal-article" @default.
- W3170833801 hasAuthorship W3170833801A5050348381 @default.
- W3170833801 hasAuthorship W3170833801A5065190539 @default.
- W3170833801 hasAuthorship W3170833801A5073889239 @default.
- W3170833801 hasConcept C104779481 @default.
- W3170833801 hasConcept C11413529 @default.
- W3170833801 hasConcept C119857082 @default.
- W3170833801 hasConcept C154945302 @default.
- W3170833801 hasConcept C159985019 @default.
- W3170833801 hasConcept C186060115 @default.
- W3170833801 hasConcept C192562407 @default.
- W3170833801 hasConcept C41008148 @default.
- W3170833801 hasConcept C50644808 @default.
- W3170833801 hasConcept C65590680 @default.
- W3170833801 hasConcept C85617194 @default.
- W3170833801 hasConcept C86803240 @default.
- W3170833801 hasConcept C92880739 @default.
- W3170833801 hasConcept C97346530 @default.
- W3170833801 hasConceptScore W3170833801C104779481 @default.
- W3170833801 hasConceptScore W3170833801C11413529 @default.
- W3170833801 hasConceptScore W3170833801C119857082 @default.
- W3170833801 hasConceptScore W3170833801C154945302 @default.
- W3170833801 hasConceptScore W3170833801C159985019 @default.
- W3170833801 hasConceptScore W3170833801C186060115 @default.
- W3170833801 hasConceptScore W3170833801C192562407 @default.
- W3170833801 hasConceptScore W3170833801C41008148 @default.
- W3170833801 hasConceptScore W3170833801C50644808 @default.
- W3170833801 hasConceptScore W3170833801C65590680 @default.
- W3170833801 hasConceptScore W3170833801C85617194 @default.
- W3170833801 hasConceptScore W3170833801C86803240 @default.
- W3170833801 hasConceptScore W3170833801C92880739 @default.
- W3170833801 hasConceptScore W3170833801C97346530 @default.
- W3170833801 hasFunder F4320322725 @default.
- W3170833801 hasLocation W31708338011 @default.
- W3170833801 hasOpenAccess W3170833801 @default.
- W3170833801 hasPrimaryLocation W31708338011 @default.
- W3170833801 hasRelatedWork W1968593846 @default.
- W3170833801 hasRelatedWork W2082717834 @default.
- W3170833801 hasRelatedWork W2333729149 @default.
- W3170833801 hasRelatedWork W2367956342 @default.
- W3170833801 hasRelatedWork W2379756343 @default.
- W3170833801 hasRelatedWork W2382100508 @default.
- W3170833801 hasRelatedWork W2472641301 @default.
- W3170833801 hasRelatedWork W2500170105 @default.