Matches in SemOpenAlex for { <https://semopenalex.org/work/W3170839811> ?p ?o ?g. }
- W3170839811 endingPage "127509" @default.
- W3170839811 startingPage "127509" @default.
- W3170839811 abstract "Scattering from metal nanoparticles near their localized plasmon resonance; especially, the resonances of noble metals which are mostly in the visible or infrared part of the electromagnetic spectrum; is a way of improving light absorption in thin-film solar cells. The surface plasmon resonance can be affected by different factors such as the type, size, shape, and dielectric properties of the surrounding medium. Here we investigate, using the Finite Difference Time Domain (FDTD) method, how different shapes of aluminum nanoparticles affect absorption enhancement in silicon thin-film solar cells. Our results show that using these particles more than 30% conversion efficiency for plasmonic solar cells can be achieved compared to a cell without particles. We have also found that although the spherical particles have the highest absorption peak, optimization of some parameters such as the height of the cylinder or disk-shaped particles and their distance from the substrate can increase the absorption. The results can provide more information and insight to understand and optimize plasmonic particles for solar cell applications." @default.
- W3170839811 created "2021-06-22" @default.
- W3170839811 creator A5001990610 @default.
- W3170839811 creator A5038291011 @default.
- W3170839811 creator A5048146087 @default.
- W3170839811 creator A5071049029 @default.
- W3170839811 creator A5080079508 @default.
- W3170839811 date "2021-08-01" @default.
- W3170839811 modified "2023-10-16" @default.
- W3170839811 title "Effect of plasmonic Aluminum nanoparticles shapes on optical absorption enhancement in silicon thin-film solar cells" @default.
- W3170839811 cites W1966086215 @default.
- W3170839811 cites W1982164354 @default.
- W3170839811 cites W2000551682 @default.
- W3170839811 cites W2001997365 @default.
- W3170839811 cites W2007713660 @default.
- W3170839811 cites W2015153029 @default.
- W3170839811 cites W2035021014 @default.
- W3170839811 cites W2037747044 @default.
- W3170839811 cites W2055702923 @default.
- W3170839811 cites W2061067645 @default.
- W3170839811 cites W2061571620 @default.
- W3170839811 cites W2061598616 @default.
- W3170839811 cites W2063524648 @default.
- W3170839811 cites W2080274498 @default.
- W3170839811 cites W2081079273 @default.
- W3170839811 cites W2081244034 @default.
- W3170839811 cites W2087572685 @default.
- W3170839811 cites W2100043100 @default.
- W3170839811 cites W2107605662 @default.
- W3170839811 cites W2112165279 @default.
- W3170839811 cites W2119184154 @default.
- W3170839811 cites W2121830147 @default.
- W3170839811 cites W2123343298 @default.
- W3170839811 cites W2124483512 @default.
- W3170839811 cites W2130761287 @default.
- W3170839811 cites W2130948069 @default.
- W3170839811 cites W2171294051 @default.
- W3170839811 cites W2370376072 @default.
- W3170839811 cites W2521813472 @default.
- W3170839811 cites W2530199821 @default.
- W3170839811 cites W2802832583 @default.
- W3170839811 cites W2884627482 @default.
- W3170839811 cites W2911508709 @default.
- W3170839811 cites W2914151819 @default.
- W3170839811 cites W2921681308 @default.
- W3170839811 cites W2941933102 @default.
- W3170839811 cites W2944698399 @default.
- W3170839811 cites W2945133883 @default.
- W3170839811 cites W2947339831 @default.
- W3170839811 cites W2955045699 @default.
- W3170839811 cites W2962719951 @default.
- W3170839811 cites W2967068838 @default.
- W3170839811 cites W2973147208 @default.
- W3170839811 cites W3000022806 @default.
- W3170839811 cites W3036985884 @default.
- W3170839811 doi "https://doi.org/10.1016/j.physleta.2021.127509" @default.
- W3170839811 hasPublicationYear "2021" @default.
- W3170839811 type Work @default.
- W3170839811 sameAs 3170839811 @default.
- W3170839811 citedByCount "16" @default.
- W3170839811 countsByYear W31708398112022 @default.
- W3170839811 countsByYear W31708398112023 @default.
- W3170839811 crossrefType "journal-article" @default.
- W3170839811 hasAuthorship W3170839811A5001990610 @default.
- W3170839811 hasAuthorship W3170839811A5038291011 @default.
- W3170839811 hasAuthorship W3170839811A5048146087 @default.
- W3170839811 hasAuthorship W3170839811A5071049029 @default.
- W3170839811 hasAuthorship W3170839811A5080079508 @default.
- W3170839811 hasBestOaLocation W31708398112 @default.
- W3170839811 hasConcept C106847996 @default.
- W3170839811 hasConcept C110879396 @default.
- W3170839811 hasConcept C111368507 @default.
- W3170839811 hasConcept C120665830 @default.
- W3170839811 hasConcept C121332964 @default.
- W3170839811 hasConcept C125287762 @default.
- W3170839811 hasConcept C127313418 @default.
- W3170839811 hasConcept C133386390 @default.
- W3170839811 hasConcept C155672457 @default.
- W3170839811 hasConcept C159985019 @default.
- W3170839811 hasConcept C171250308 @default.
- W3170839811 hasConcept C184880428 @default.
- W3170839811 hasConcept C19067145 @default.
- W3170839811 hasConcept C192562407 @default.
- W3170839811 hasConcept C2777289219 @default.
- W3170839811 hasConcept C2780824857 @default.
- W3170839811 hasConcept C47180545 @default.
- W3170839811 hasConcept C49040817 @default.
- W3170839811 hasConcept C544956773 @default.
- W3170839811 hasConcept C59342456 @default.
- W3170839811 hasConcept C66187686 @default.
- W3170839811 hasConceptScore W3170839811C106847996 @default.
- W3170839811 hasConceptScore W3170839811C110879396 @default.
- W3170839811 hasConceptScore W3170839811C111368507 @default.
- W3170839811 hasConceptScore W3170839811C120665830 @default.
- W3170839811 hasConceptScore W3170839811C121332964 @default.
- W3170839811 hasConceptScore W3170839811C125287762 @default.
- W3170839811 hasConceptScore W3170839811C127313418 @default.
- W3170839811 hasConceptScore W3170839811C133386390 @default.