Matches in SemOpenAlex for { <https://semopenalex.org/work/W3171172539> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3171172539 abstract "The competition between scientific institutions is increased every day. Every institution tends to improve its reputation by producing and publishing high-quality scientific research. Clustering and evaluating the educational institutions are important for professors, policymakers, as well as students. This research aims to develop a Jarvis-Patrick algorithm for scientific institutions clustering, which is one of the graph-based techniques. It suffers from the problem of a large number of clusters. In addition to the Shared Nearest Neighbor (SNN) similarity included in the standard Mini Jarvis-Patrick (MJP) algorithm, the merging clusters of low separation are proposed to improve algorithm performance. The SNN similarity measures the number of shared neighbors between every two points in the data. Besides that, the merging is implemented by combining the clusters that have low separation. The proposed algorithm takes advantage of cluster validity measures (separation) to produce rational and reasonable clusters. The SciVal dataset for USA scientific institutions 2016-2018 dataset is used. The proposed MJP detected 8 clusters (Cluster0 %6, Cluster16%, Cluster2 6%, Cluster3 2%, Cluster4 7%, Cluster5 7.3%, Cluster6 26.6%, Cluster7 32%). In addition to the standard MJP, the proposed technique is compared with known methods; the cobweb, DBSCAN, and HierarchicalClusterer. The results have proved that the MJP is superior to other methods." @default.
- W3171172539 created "2021-06-22" @default.
- W3171172539 creator A5008500283 @default.
- W3171172539 creator A5062494803 @default.
- W3171172539 date "2020-12-23" @default.
- W3171172539 modified "2023-10-18" @default.
- W3171172539 title "Mini Jarvis Patrick -Based Graph Clustering for Scientific Institutions" @default.
- W3171172539 cites W1539947443 @default.
- W3171172539 cites W2104748244 @default.
- W3171172539 cites W2342720116 @default.
- W3171172539 cites W2471845489 @default.
- W3171172539 cites W2512294887 @default.
- W3171172539 cites W2733722625 @default.
- W3171172539 cites W2772685197 @default.
- W3171172539 cites W2790377064 @default.
- W3171172539 cites W2910289954 @default.
- W3171172539 cites W2940544365 @default.
- W3171172539 cites W2946254251 @default.
- W3171172539 cites W3097791779 @default.
- W3171172539 cites W3119364141 @default.
- W3171172539 cites W575847903 @default.
- W3171172539 doi "https://doi.org/10.1109/icoase51841.2020.9436589" @default.
- W3171172539 hasPublicationYear "2020" @default.
- W3171172539 type Work @default.
- W3171172539 sameAs 3171172539 @default.
- W3171172539 citedByCount "0" @default.
- W3171172539 crossrefType "proceedings-article" @default.
- W3171172539 hasAuthorship W3171172539A5008500283 @default.
- W3171172539 hasAuthorship W3171172539A5062494803 @default.
- W3171172539 hasConcept C103278499 @default.
- W3171172539 hasConcept C113238511 @default.
- W3171172539 hasConcept C115961682 @default.
- W3171172539 hasConcept C124101348 @default.
- W3171172539 hasConcept C132525143 @default.
- W3171172539 hasConcept C154945302 @default.
- W3171172539 hasConcept C17212007 @default.
- W3171172539 hasConcept C17744445 @default.
- W3171172539 hasConcept C199539241 @default.
- W3171172539 hasConcept C33704608 @default.
- W3171172539 hasConcept C41008148 @default.
- W3171172539 hasConcept C46576248 @default.
- W3171172539 hasConcept C48798503 @default.
- W3171172539 hasConcept C73555534 @default.
- W3171172539 hasConcept C80444323 @default.
- W3171172539 hasConceptScore W3171172539C103278499 @default.
- W3171172539 hasConceptScore W3171172539C113238511 @default.
- W3171172539 hasConceptScore W3171172539C115961682 @default.
- W3171172539 hasConceptScore W3171172539C124101348 @default.
- W3171172539 hasConceptScore W3171172539C132525143 @default.
- W3171172539 hasConceptScore W3171172539C154945302 @default.
- W3171172539 hasConceptScore W3171172539C17212007 @default.
- W3171172539 hasConceptScore W3171172539C17744445 @default.
- W3171172539 hasConceptScore W3171172539C199539241 @default.
- W3171172539 hasConceptScore W3171172539C33704608 @default.
- W3171172539 hasConceptScore W3171172539C41008148 @default.
- W3171172539 hasConceptScore W3171172539C46576248 @default.
- W3171172539 hasConceptScore W3171172539C48798503 @default.
- W3171172539 hasConceptScore W3171172539C73555534 @default.
- W3171172539 hasConceptScore W3171172539C80444323 @default.
- W3171172539 hasLocation W31711725391 @default.
- W3171172539 hasOpenAccess W3171172539 @default.
- W3171172539 hasPrimaryLocation W31711725391 @default.
- W3171172539 hasRelatedWork W11887715 @default.
- W3171172539 hasRelatedWork W3447867 @default.
- W3171172539 hasRelatedWork W3458895 @default.
- W3171172539 hasRelatedWork W4129818 @default.
- W3171172539 hasRelatedWork W6839859 @default.
- W3171172539 hasRelatedWork W8190784 @default.
- W3171172539 hasRelatedWork W845024 @default.
- W3171172539 hasRelatedWork W8666167 @default.
- W3171172539 hasRelatedWork W9657029 @default.
- W3171172539 hasRelatedWork W9613553 @default.
- W3171172539 isParatext "false" @default.
- W3171172539 isRetracted "false" @default.
- W3171172539 magId "3171172539" @default.
- W3171172539 workType "article" @default.