Matches in SemOpenAlex for { <https://semopenalex.org/work/W3171189909> ?p ?o ?g. }
- W3171189909 endingPage "4041" @default.
- W3171189909 startingPage "4021" @default.
- W3171189909 abstract "Abstract The water supply in megacities can be affected by the living habits and population mobility, so the fluctuation degree of daily water supply data is acute, which presents a great challenge to the water demand prediction. This is because that non-stationarity of daily data can have a large influence on the generalization ability of models. In this study, the Hodrick-Prescott (HP) and wavelet transform (WT) methods were used to carry out decomposition of daily data to solve the non-stationarity problem. The bidirectional long short term memory (BLSTM), seasonal autoregressive integrated moving average (SARIMA) and Gaussian radial basis function neural network (GRBFNN) were developed to carry out prediction of different subseries. The ensemble learning was introduced to improve the generalization ability of models, and prediction interval was generated based on student's t-test to cope with the variation of water supply laws. This study method was applied to the daily water demand prediction in Shenzhen and cross-validation was performed. The results show that WT is superior to HP decomposition method, but maximum decomposition level of WT should not be set too high, otherwise the trend characteristics of subseries will be weakened. Although the corona virus disease 2019 (COVID-19) outbreak caused a variation in water supply laws, this variation is still within the prediction interval. The WT and coupling models accurately predict water demand and provide the optimal mean square error (0.17%), Nash-Sutcliffe efficiency (97.21%), mean relative error (0.1), mean absolute error (3.32%), and correlation coefficient (0.99)." @default.
- W3171189909 created "2021-06-22" @default.
- W3171189909 creator A5021687717 @default.
- W3171189909 creator A5059015054 @default.
- W3171189909 creator A5074972901 @default.
- W3171189909 creator A5091873222 @default.
- W3171189909 date "2021-09-01" @default.
- W3171189909 modified "2023-10-16" @default.
- W3171189909 title "Multi-Model Coupling Water Demand Prediction Optimization Method for Megacities Based on Time Series Decomposition" @default.
- W3171189909 cites W2023035537 @default.
- W3171189909 cites W2527259951 @default.
- W3171189909 cites W2553892484 @default.
- W3171189909 cites W2604452528 @default.
- W3171189909 cites W2766778389 @default.
- W3171189909 cites W2767209875 @default.
- W3171189909 cites W2782676795 @default.
- W3171189909 cites W2792586183 @default.
- W3171189909 cites W2799696286 @default.
- W3171189909 cites W2800481703 @default.
- W3171189909 cites W2809595040 @default.
- W3171189909 cites W2865675487 @default.
- W3171189909 cites W2887755351 @default.
- W3171189909 cites W2893564989 @default.
- W3171189909 cites W2896691302 @default.
- W3171189909 cites W2904707438 @default.
- W3171189909 cites W2904758662 @default.
- W3171189909 cites W2930650313 @default.
- W3171189909 cites W2943021196 @default.
- W3171189909 cites W2944851425 @default.
- W3171189909 cites W2947836073 @default.
- W3171189909 cites W2959981323 @default.
- W3171189909 cites W2964288588 @default.
- W3171189909 cites W2966126335 @default.
- W3171189909 cites W2967033144 @default.
- W3171189909 cites W2970835038 @default.
- W3171189909 cites W2972486598 @default.
- W3171189909 cites W2999406207 @default.
- W3171189909 cites W3000454981 @default.
- W3171189909 cites W3006914768 @default.
- W3171189909 cites W3010757501 @default.
- W3171189909 cites W3035664094 @default.
- W3171189909 cites W3037974757 @default.
- W3171189909 cites W3048786892 @default.
- W3171189909 cites W3088994063 @default.
- W3171189909 cites W3095132059 @default.
- W3171189909 cites W3120443727 @default.
- W3171189909 cites W3156744954 @default.
- W3171189909 cites W4241479400 @default.
- W3171189909 doi "https://doi.org/10.1007/s11269-021-02927-y" @default.
- W3171189909 hasPublicationYear "2021" @default.
- W3171189909 type Work @default.
- W3171189909 sameAs 3171189909 @default.
- W3171189909 citedByCount "5" @default.
- W3171189909 countsByYear W31711899092022 @default.
- W3171189909 countsByYear W31711899092023 @default.
- W3171189909 crossrefType "journal-article" @default.
- W3171189909 hasAuthorship W3171189909A5021687717 @default.
- W3171189909 hasAuthorship W3171189909A5059015054 @default.
- W3171189909 hasAuthorship W3171189909A5074972901 @default.
- W3171189909 hasAuthorship W3171189909A5091873222 @default.
- W3171189909 hasBestOaLocation W31711899091 @default.
- W3171189909 hasConcept C105795698 @default.
- W3171189909 hasConcept C114614502 @default.
- W3171189909 hasConcept C122383733 @default.
- W3171189909 hasConcept C134306372 @default.
- W3171189909 hasConcept C139945424 @default.
- W3171189909 hasConcept C143724316 @default.
- W3171189909 hasConcept C149782125 @default.
- W3171189909 hasConcept C150217764 @default.
- W3171189909 hasConcept C151406439 @default.
- W3171189909 hasConcept C151730666 @default.
- W3171189909 hasConcept C159877910 @default.
- W3171189909 hasConcept C177148314 @default.
- W3171189909 hasConcept C24338571 @default.
- W3171189909 hasConcept C2778067643 @default.
- W3171189909 hasConcept C33923547 @default.
- W3171189909 hasConcept C41008148 @default.
- W3171189909 hasConcept C86803240 @default.
- W3171189909 hasConceptScore W3171189909C105795698 @default.
- W3171189909 hasConceptScore W3171189909C114614502 @default.
- W3171189909 hasConceptScore W3171189909C122383733 @default.
- W3171189909 hasConceptScore W3171189909C134306372 @default.
- W3171189909 hasConceptScore W3171189909C139945424 @default.
- W3171189909 hasConceptScore W3171189909C143724316 @default.
- W3171189909 hasConceptScore W3171189909C149782125 @default.
- W3171189909 hasConceptScore W3171189909C150217764 @default.
- W3171189909 hasConceptScore W3171189909C151406439 @default.
- W3171189909 hasConceptScore W3171189909C151730666 @default.
- W3171189909 hasConceptScore W3171189909C159877910 @default.
- W3171189909 hasConceptScore W3171189909C177148314 @default.
- W3171189909 hasConceptScore W3171189909C24338571 @default.
- W3171189909 hasConceptScore W3171189909C2778067643 @default.
- W3171189909 hasConceptScore W3171189909C33923547 @default.
- W3171189909 hasConceptScore W3171189909C41008148 @default.
- W3171189909 hasConceptScore W3171189909C86803240 @default.
- W3171189909 hasFunder F4320321001 @default.
- W3171189909 hasIssue "12" @default.
- W3171189909 hasLocation W31711899091 @default.