Matches in SemOpenAlex for { <https://semopenalex.org/work/W3171272432> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3171272432 endingPage "442" @default.
- W3171272432 startingPage "420" @default.
- W3171272432 abstract "A standard approach to calculate the roots of a univariate polynomial is to compute the eigenvalues of an associated confederate matrix instead, such as, for instance, the companion or comrade matrix. The eigenvalues of the confederate matrix can be computed by Francis's QR algorithm. Unfortunately, even though the QR algorithm is provably backward stable, mapping the errors back to the original polynomial coefficients can still lead to huge errors. However, the latter statement assumes the use of a non-structure-exploiting QR algorithm. In [J. L. Aurentz et al., Fast and backward stable computation of roots of polynomials, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 942â973] it was shown that a structure-exploiting QR algorithm for companion matrices leads to a structured backward error in the companion matrix. The proof relied on decomposing the error into two parts: a part related to the recurrence coefficients of the basis (a monomial basis in that case) and a part linked to the coefficients of the original polynomial. In this article we prove that the analysis can be extended to other classes of comrade matrices. We first provide an alternative backward stability proof in the monomial basis using structured QR algorithms; our new point of view shows more explicitly how a structured, decoupled error in the confederate matrix gets mapped to the associated polynomial coefficients. This insight reveals which properties have to be preserved by a structure-exploiting QR algorithm to end up with a backward stable algorithm. We will show that the previously formulated companion analysis fits into this framework, and we analyze in more detail Jacobi polynomials (comrade matrices) and Chebyshev polynomials (colleague matrices)." @default.
- W3171272432 created "2021-06-22" @default.
- W3171272432 creator A5039999347 @default.
- W3171272432 creator A5049219826 @default.
- W3171272432 creator A5064797994 @default.
- W3171272432 date "2021-01-01" @default.
- W3171272432 modified "2023-09-23" @default.
- W3171272432 title "Structured backward errors in linearizations" @default.
- W3171272432 doi "https://doi.org/10.1553/etna_vol54s420" @default.
- W3171272432 hasPublicationYear "2021" @default.
- W3171272432 type Work @default.
- W3171272432 sameAs 3171272432 @default.
- W3171272432 citedByCount "0" @default.
- W3171272432 crossrefType "journal-article" @default.
- W3171272432 hasAuthorship W3171272432A5039999347 @default.
- W3171272432 hasAuthorship W3171272432A5049219826 @default.
- W3171272432 hasAuthorship W3171272432A5064797994 @default.
- W3171272432 hasBestOaLocation W31712724321 @default.
- W3171272432 hasConcept C101044782 @default.
- W3171272432 hasConcept C105795698 @default.
- W3171272432 hasConcept C106487976 @default.
- W3171272432 hasConcept C11252640 @default.
- W3171272432 hasConcept C11413529 @default.
- W3171272432 hasConcept C118615104 @default.
- W3171272432 hasConcept C121332964 @default.
- W3171272432 hasConcept C12426560 @default.
- W3171272432 hasConcept C126352355 @default.
- W3171272432 hasConcept C134306372 @default.
- W3171272432 hasConcept C141495983 @default.
- W3171272432 hasConcept C158693339 @default.
- W3171272432 hasConcept C159985019 @default.
- W3171272432 hasConcept C161584116 @default.
- W3171272432 hasConcept C192562407 @default.
- W3171272432 hasConcept C199163554 @default.
- W3171272432 hasConcept C2524010 @default.
- W3171272432 hasConcept C28826006 @default.
- W3171272432 hasConcept C33923547 @default.
- W3171272432 hasConcept C62520636 @default.
- W3171272432 hasConcept C90119067 @default.
- W3171272432 hasConceptScore W3171272432C101044782 @default.
- W3171272432 hasConceptScore W3171272432C105795698 @default.
- W3171272432 hasConceptScore W3171272432C106487976 @default.
- W3171272432 hasConceptScore W3171272432C11252640 @default.
- W3171272432 hasConceptScore W3171272432C11413529 @default.
- W3171272432 hasConceptScore W3171272432C118615104 @default.
- W3171272432 hasConceptScore W3171272432C121332964 @default.
- W3171272432 hasConceptScore W3171272432C12426560 @default.
- W3171272432 hasConceptScore W3171272432C126352355 @default.
- W3171272432 hasConceptScore W3171272432C134306372 @default.
- W3171272432 hasConceptScore W3171272432C141495983 @default.
- W3171272432 hasConceptScore W3171272432C158693339 @default.
- W3171272432 hasConceptScore W3171272432C159985019 @default.
- W3171272432 hasConceptScore W3171272432C161584116 @default.
- W3171272432 hasConceptScore W3171272432C192562407 @default.
- W3171272432 hasConceptScore W3171272432C199163554 @default.
- W3171272432 hasConceptScore W3171272432C2524010 @default.
- W3171272432 hasConceptScore W3171272432C28826006 @default.
- W3171272432 hasConceptScore W3171272432C33923547 @default.
- W3171272432 hasConceptScore W3171272432C62520636 @default.
- W3171272432 hasConceptScore W3171272432C90119067 @default.
- W3171272432 hasLocation W31712724321 @default.
- W3171272432 hasLocation W31712724322 @default.
- W3171272432 hasLocation W31712724323 @default.
- W3171272432 hasOpenAccess W3171272432 @default.
- W3171272432 hasPrimaryLocation W31712724321 @default.
- W3171272432 hasRelatedWork W1575809 @default.
- W3171272432 hasRelatedWork W19770772 @default.
- W3171272432 hasRelatedWork W24765920 @default.
- W3171272432 hasRelatedWork W34557541 @default.
- W3171272432 hasRelatedWork W36999706 @default.
- W3171272432 hasRelatedWork W37213052 @default.
- W3171272432 hasRelatedWork W38276089 @default.
- W3171272432 hasRelatedWork W46404070 @default.
- W3171272432 hasRelatedWork W47680732 @default.
- W3171272432 hasRelatedWork W21261701 @default.
- W3171272432 hasVolume "54" @default.
- W3171272432 isParatext "false" @default.
- W3171272432 isRetracted "false" @default.
- W3171272432 magId "3171272432" @default.
- W3171272432 workType "article" @default.