Matches in SemOpenAlex for { <https://semopenalex.org/work/W3171322114> ?p ?o ?g. }
- W3171322114 endingPage "121430" @default.
- W3171322114 startingPage "121430" @default.
- W3171322114 abstract "Ground testing of ablative materials aims at providing critical data on the material behavior under hypersonic reentry conditions. This is normally done in plasma wind tunnel facilities. However, non-negligible technical challenges are faced in order to duplicate the real flight conditions, such as inducing the recession of space-relevant ablative materials, which requires sufficiently high inflow total enthalpies, and/or reproducing the actual hypersonic flow velocity, which requires sufficiently high inflow Mach numbers. Often, ground facilities which are providing one requirement are lacking the other one and vice-versa. A possible solution is to use low-temperature ablators in continuous hypersonic blow-down tunnels, where aerodynamic and ablative tests with considerable shape change effects may be performed under reasonably low total temperature conditions and with affordable test durations. These substances are readily available, and they sublimate or ablate in a fashion that can be described fairly accurately by theory. This work has the objective to numerically characterize the shape change of such materials in hypersonic conditions, concurrently providing a validation against literature data and from a dedicated experimental ground test campaign. The numerical procedure relies on ad-hoc mesh generation/evolution strategies taking into account the material shape change, and is based on subsequent steady-state Computational Fluid Dynamics (CFD) computations coupled with a customizable gas-surface interaction wall boundary condition. Preliminary numerical simulations helped the design of the experiments to be carried out in the von Karman Institute (VKI) H-3 hypersonic wind tunnel, in particular for the identification of capsule geometry and size in order to maximize the shape change caused by ablation. Subsequently, camphor is identified as the most suitable low-temperature ablator to be used in the experimental campaign after a thorough analysis of its surface reaction thermodynamics and kinetics. Results from the CFD approach are first compared with a literature experimental test case and then with those of the previously designed experiments, featuring a camphor sub-scale capsule, underlying advantages and limits of the numerical procedure adopted. The obtained numerical and experimental results underline how it is possible to obtain a relevant shape change for relatively small exposure times by using low-temperature ablators in continuous hypersonic blow-down wind tunnels. Hence, results from this work can be used to support the design and sizing of the actual heat shield and the analysis of the capsule’s aerodynamics and stability, accounting for shape change effects, by establishing an appropriate similitude between in-flight and on-ground conditions." @default.
- W3171322114 created "2021-06-22" @default.
- W3171322114 creator A5010868964 @default.
- W3171322114 creator A5062230419 @default.
- W3171322114 creator A5076228913 @default.
- W3171322114 creator A5083440282 @default.
- W3171322114 date "2021-10-01" @default.
- W3171322114 modified "2023-10-14" @default.
- W3171322114 title "Numerical Analysis and Wind Tunnel Validation of Low-Temperature Ablators undergoing Shape Change" @default.
- W3171322114 cites W1045108917 @default.
- W3171322114 cites W1973442941 @default.
- W3171322114 cites W1973788591 @default.
- W3171322114 cites W1975247328 @default.
- W3171322114 cites W1984384394 @default.
- W3171322114 cites W1984385244 @default.
- W3171322114 cites W1988447451 @default.
- W3171322114 cites W2009345063 @default.
- W3171322114 cites W2010173430 @default.
- W3171322114 cites W2032661882 @default.
- W3171322114 cites W2038975865 @default.
- W3171322114 cites W2041330868 @default.
- W3171322114 cites W2049504037 @default.
- W3171322114 cites W2051150531 @default.
- W3171322114 cites W2064544877 @default.
- W3171322114 cites W2079604771 @default.
- W3171322114 cites W2089593076 @default.
- W3171322114 cites W2115515271 @default.
- W3171322114 cites W2120415116 @default.
- W3171322114 cites W2127875509 @default.
- W3171322114 cites W2127931614 @default.
- W3171322114 cites W2148718255 @default.
- W3171322114 cites W2156562221 @default.
- W3171322114 cites W2321102973 @default.
- W3171322114 cites W2407032750 @default.
- W3171322114 cites W2480201533 @default.
- W3171322114 cites W2578078739 @default.
- W3171322114 cites W2790397032 @default.
- W3171322114 cites W2891880111 @default.
- W3171322114 cites W3080526298 @default.
- W3171322114 cites W3192211684 @default.
- W3171322114 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2021.121430" @default.
- W3171322114 hasPublicationYear "2021" @default.
- W3171322114 type Work @default.
- W3171322114 sameAs 3171322114 @default.
- W3171322114 citedByCount "12" @default.
- W3171322114 countsByYear W31713221142022 @default.
- W3171322114 countsByYear W31713221142023 @default.
- W3171322114 crossrefType "journal-article" @default.
- W3171322114 hasAuthorship W3171322114A5010868964 @default.
- W3171322114 hasAuthorship W3171322114A5062230419 @default.
- W3171322114 hasAuthorship W3171322114A5076228913 @default.
- W3171322114 hasAuthorship W3171322114A5083440282 @default.
- W3171322114 hasConcept C100086909 @default.
- W3171322114 hasConcept C11066151 @default.
- W3171322114 hasConcept C121332964 @default.
- W3171322114 hasConcept C122824865 @default.
- W3171322114 hasConcept C127413603 @default.
- W3171322114 hasConcept C13393347 @default.
- W3171322114 hasConcept C146978453 @default.
- W3171322114 hasConcept C156975606 @default.
- W3171322114 hasConcept C1633027 @default.
- W3171322114 hasConcept C165231844 @default.
- W3171322114 hasConcept C167191414 @default.
- W3171322114 hasConcept C192562407 @default.
- W3171322114 hasConcept C198813307 @default.
- W3171322114 hasConcept C2776132308 @default.
- W3171322114 hasConcept C39432304 @default.
- W3171322114 hasConcept C41008148 @default.
- W3171322114 hasConcept C50517652 @default.
- W3171322114 hasConcept C57879066 @default.
- W3171322114 hasConceptScore W3171322114C100086909 @default.
- W3171322114 hasConceptScore W3171322114C11066151 @default.
- W3171322114 hasConceptScore W3171322114C121332964 @default.
- W3171322114 hasConceptScore W3171322114C122824865 @default.
- W3171322114 hasConceptScore W3171322114C127413603 @default.
- W3171322114 hasConceptScore W3171322114C13393347 @default.
- W3171322114 hasConceptScore W3171322114C146978453 @default.
- W3171322114 hasConceptScore W3171322114C156975606 @default.
- W3171322114 hasConceptScore W3171322114C1633027 @default.
- W3171322114 hasConceptScore W3171322114C165231844 @default.
- W3171322114 hasConceptScore W3171322114C167191414 @default.
- W3171322114 hasConceptScore W3171322114C192562407 @default.
- W3171322114 hasConceptScore W3171322114C198813307 @default.
- W3171322114 hasConceptScore W3171322114C2776132308 @default.
- W3171322114 hasConceptScore W3171322114C39432304 @default.
- W3171322114 hasConceptScore W3171322114C41008148 @default.
- W3171322114 hasConceptScore W3171322114C50517652 @default.
- W3171322114 hasConceptScore W3171322114C57879066 @default.
- W3171322114 hasFunder F4320318240 @default.
- W3171322114 hasLocation W31713221141 @default.
- W3171322114 hasOpenAccess W3171322114 @default.
- W3171322114 hasPrimaryLocation W31713221141 @default.
- W3171322114 hasRelatedWork W1495419753 @default.
- W3171322114 hasRelatedWork W153231606 @default.
- W3171322114 hasRelatedWork W2249944419 @default.
- W3171322114 hasRelatedWork W2254580458 @default.
- W3171322114 hasRelatedWork W2475773537 @default.
- W3171322114 hasRelatedWork W2803391302 @default.