Matches in SemOpenAlex for { <https://semopenalex.org/work/W3171323197> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W3171323197 abstract "<div data-node-type="line"><span>Floods have significant impact on social and economic activities</span><span>,</span> <span>with</span><span> flood </span><span>frequency projected </span><span>to increase in the future in&#160;</span><span>many regions of the world</span> <span>due to</span><span> climate change</span><span>. Quantification of current and future flood risk at lead times of months to years are potentially of high value for planning activities in a wide range of humanitarian and business applications across multiple sectors. However, there are also many technical and methodological challenges in producing accurate, local predictions which also adequately quantify uncertainty. Multiple geospatial datasets are freely available to improve flood predictions, but their size and complexity mean they are difficult to store and combine. Generation of flood inundation risk maps requires the combination of several static geospatial data layers with potentially multiple simulation models and ensembles of climate inputs.</span></div><div>&#160;</div><div data-node-type="line"></div><div data-node-type="line"><span>Here w</span><span>e present a geospatial climate impact modelling framework, which we apply to the challenge of flooding </span><span>risk quantification</span><span>.&#160; </span><span>Our framework</span><span> is modular, scalable cloud-based </span><span>and </span><span>allows for the easy deployment of different impact models and model components with a range of input datasets (different spatial and temporal scales) and model configurations.&#160;&#160;</span></div><div data-node-type="line"><span>&#160;</span></div><div data-node-type="line"><span>The framework allows us to use automated tools to carry out AI-enabled parameter calibration, model validation and uncertainty quantification/propagation, with the ability to quickly run the impact models for any location where the appropriate data is available.&#160; We can additionally trial different sources of input data, pulling data from IBM PAIRS Geoscope and other sources, and we have done this with our pluvial flood models.</span></div><div>&#160;</div><div data-node-type="line"></div><div data-node-type="line"><span>In this presentation, we provide pluvial flood risk assessments </span><span>generated through</span><span> our framework. We calibrate</span><span> our</span><span> flood models to accurately reproduce inundations derived from historical precipitation datasets</span><span>, validated </span><span>against flood maps obtained from corresponding satellite imager</span><span>y,</span><span> and quantify uncertainties for hydrological parameters. Probabilistic flood risk </span><span>is</span><span> generated through ensemble execution of </span><span>such</span><span> models</span><span>,</span><span> incorporating climate change and model parameter uncertainties.</span></div>" @default.
- W3171323197 created "2021-06-22" @default.
- W3171323197 creator A5014577525 @default.
- W3171323197 creator A5056267728 @default.
- W3171323197 creator A5062702059 @default.
- W3171323197 creator A5083310235 @default.
- W3171323197 creator A5085048610 @default.
- W3171323197 date "2021-03-04" @default.
- W3171323197 modified "2023-09-23" @default.
- W3171323197 title "A geospatial and temporal analytics framework for flood risk mapping" @default.
- W3171323197 doi "https://doi.org/10.5194/egusphere-egu21-14064" @default.
- W3171323197 hasPublicationYear "2021" @default.
- W3171323197 type Work @default.
- W3171323197 sameAs 3171323197 @default.
- W3171323197 citedByCount "0" @default.
- W3171323197 crossrefType "posted-content" @default.
- W3171323197 hasAuthorship W3171323197A5014577525 @default.
- W3171323197 hasAuthorship W3171323197A5056267728 @default.
- W3171323197 hasAuthorship W3171323197A5062702059 @default.
- W3171323197 hasAuthorship W3171323197A5083310235 @default.
- W3171323197 hasAuthorship W3171323197A5085048610 @default.
- W3171323197 hasConcept C127413603 @default.
- W3171323197 hasConcept C166957645 @default.
- W3171323197 hasConcept C205649164 @default.
- W3171323197 hasConcept C2778753569 @default.
- W3171323197 hasConcept C58640448 @default.
- W3171323197 hasConcept C66938386 @default.
- W3171323197 hasConcept C74256435 @default.
- W3171323197 hasConcept C9770341 @default.
- W3171323197 hasConceptScore W3171323197C127413603 @default.
- W3171323197 hasConceptScore W3171323197C166957645 @default.
- W3171323197 hasConceptScore W3171323197C205649164 @default.
- W3171323197 hasConceptScore W3171323197C2778753569 @default.
- W3171323197 hasConceptScore W3171323197C58640448 @default.
- W3171323197 hasConceptScore W3171323197C66938386 @default.
- W3171323197 hasConceptScore W3171323197C74256435 @default.
- W3171323197 hasConceptScore W3171323197C9770341 @default.
- W3171323197 hasLocation W31713231971 @default.
- W3171323197 hasOpenAccess W3171323197 @default.
- W3171323197 hasPrimaryLocation W31713231971 @default.
- W3171323197 hasRelatedWork W2845014 @default.
- W3171323197 hasRelatedWork W3557808 @default.
- W3171323197 hasRelatedWork W3913415 @default.
- W3171323197 hasRelatedWork W445653 @default.
- W3171323197 hasRelatedWork W5357497 @default.
- W3171323197 hasRelatedWork W8076119 @default.
- W3171323197 hasRelatedWork W863070 @default.
- W3171323197 hasRelatedWork W9311674 @default.
- W3171323197 hasRelatedWork W996820 @default.
- W3171323197 hasRelatedWork W7004484 @default.
- W3171323197 isParatext "false" @default.
- W3171323197 isRetracted "false" @default.
- W3171323197 magId "3171323197" @default.
- W3171323197 workType "article" @default.