Matches in SemOpenAlex for { <https://semopenalex.org/work/W3171407144> ?p ?o ?g. }
- W3171407144 endingPage "e07179" @default.
- W3171407144 startingPage "e07179" @default.
- W3171407144 abstract "Big data analytics and artificial intelligence are revolutionizing the global healthcare industry. As the world accumulates unfathomable volumes of data and health technology grows more and more critical to the advancement of medicine, policymakers and regulators are faced with tough challenges around data security and data privacy. This paper reviews existing regulatory frameworks for artificial intelligence-based medical devices and health data privacy in Bangladesh. The study is legal research employing a comparative approach where data is collected from primary and secondary legal materials and filtered based on policies relating to medical data privacy and medical device regulation of Bangladesh. Such policies are then compared with benchmark policies of the European Union and the USA to test the adequacy of the present regulatory framework of Bangladesh and identify the gaps in the current regulation. The study highlights the gaps in policy and regulation in Bangladesh that are hampering the widespread adoption of big data analytics and artificial intelligence in the industry. Despite the vast benefits that big data would bring to Bangladesh's healthcare industry, it lacks the proper data governance and legal framework necessary to gain consumer trust and move forward. Policymakers and regulators must work collaboratively with clinicians, patients and industry to adopt a new regulatory framework that harnesses the potential of big data but ensures adequate privacy and security of personal data. The article opens valuable insight to regulators, academicians, researchers and legal practitioners regarding the present regulatory loopholes in Bangladesh involving exploiting the promise of big data in the medical field. The study concludes with the recommendation for future research into the area of privacy as it relates to artificial intelligence-based medical devices should consult the patients' perspective by employing quantitative analysis research methodology." @default.
- W3171407144 created "2021-06-22" @default.
- W3171407144 creator A5003931668 @default.
- W3171407144 creator A5064447434 @default.
- W3171407144 creator A5081118409 @default.
- W3171407144 creator A5089982959 @default.
- W3171407144 date "2021-06-01" @default.
- W3171407144 modified "2023-10-14" @default.
- W3171407144 title "Big data and predictive analytics in healthcare in Bangladesh: regulatory challenges" @default.
- W3171407144 cites W2303147257 @default.
- W3171407144 cites W2473046424 @default.
- W3171407144 cites W2616332126 @default.
- W3171407144 cites W2770203518 @default.
- W3171407144 cites W2800012666 @default.
- W3171407144 cites W2889377580 @default.
- W3171407144 cites W2892555721 @default.
- W3171407144 cites W2900103399 @default.
- W3171407144 cites W2901967497 @default.
- W3171407144 cites W2903777941 @default.
- W3171407144 cites W2906295032 @default.
- W3171407144 cites W2908201961 @default.
- W3171407144 cites W2911891152 @default.
- W3171407144 cites W2915720827 @default.
- W3171407144 cites W2951934944 @default.
- W3171407144 cites W2971707452 @default.
- W3171407144 cites W2980873162 @default.
- W3171407144 cites W2997289492 @default.
- W3171407144 cites W2998744932 @default.
- W3171407144 cites W3006379117 @default.
- W3171407144 cites W3010611814 @default.
- W3171407144 cites W3025673311 @default.
- W3171407144 cites W3035954624 @default.
- W3171407144 cites W3041148084 @default.
- W3171407144 cites W3083828464 @default.
- W3171407144 cites W3092376073 @default.
- W3171407144 cites W3093602247 @default.
- W3171407144 cites W3119071838 @default.
- W3171407144 cites W3121368818 @default.
- W3171407144 cites W3125532702 @default.
- W3171407144 cites W3172240521 @default.
- W3171407144 doi "https://doi.org/10.1016/j.heliyon.2021.e07179" @default.
- W3171407144 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8188364" @default.
- W3171407144 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34141936" @default.
- W3171407144 hasPublicationYear "2021" @default.
- W3171407144 type Work @default.
- W3171407144 sameAs 3171407144 @default.
- W3171407144 citedByCount "11" @default.
- W3171407144 countsByYear W31714071442022 @default.
- W3171407144 countsByYear W31714071442023 @default.
- W3171407144 crossrefType "journal-article" @default.
- W3171407144 hasAuthorship W3171407144A5003931668 @default.
- W3171407144 hasAuthorship W3171407144A5064447434 @default.
- W3171407144 hasAuthorship W3171407144A5081118409 @default.
- W3171407144 hasAuthorship W3171407144A5089982959 @default.
- W3171407144 hasBestOaLocation W31714071441 @default.
- W3171407144 hasConcept C10138342 @default.
- W3171407144 hasConcept C105639569 @default.
- W3171407144 hasConcept C108827166 @default.
- W3171407144 hasConcept C123201435 @default.
- W3171407144 hasConcept C124101348 @default.
- W3171407144 hasConcept C144133560 @default.
- W3171407144 hasConcept C160735492 @default.
- W3171407144 hasConcept C162853370 @default.
- W3171407144 hasConcept C176217482 @default.
- W3171407144 hasConcept C17744445 @default.
- W3171407144 hasConcept C196879817 @default.
- W3171407144 hasConcept C199539241 @default.
- W3171407144 hasConcept C24756922 @default.
- W3171407144 hasConcept C2522767166 @default.
- W3171407144 hasConcept C2778656907 @default.
- W3171407144 hasConcept C2910001868 @default.
- W3171407144 hasConcept C38652104 @default.
- W3171407144 hasConcept C39389867 @default.
- W3171407144 hasConcept C41008148 @default.
- W3171407144 hasConcept C69360830 @default.
- W3171407144 hasConcept C75684735 @default.
- W3171407144 hasConcept C79158427 @default.
- W3171407144 hasConceptScore W3171407144C10138342 @default.
- W3171407144 hasConceptScore W3171407144C105639569 @default.
- W3171407144 hasConceptScore W3171407144C108827166 @default.
- W3171407144 hasConceptScore W3171407144C123201435 @default.
- W3171407144 hasConceptScore W3171407144C124101348 @default.
- W3171407144 hasConceptScore W3171407144C144133560 @default.
- W3171407144 hasConceptScore W3171407144C160735492 @default.
- W3171407144 hasConceptScore W3171407144C162853370 @default.
- W3171407144 hasConceptScore W3171407144C176217482 @default.
- W3171407144 hasConceptScore W3171407144C17744445 @default.
- W3171407144 hasConceptScore W3171407144C196879817 @default.
- W3171407144 hasConceptScore W3171407144C199539241 @default.
- W3171407144 hasConceptScore W3171407144C24756922 @default.
- W3171407144 hasConceptScore W3171407144C2522767166 @default.
- W3171407144 hasConceptScore W3171407144C2778656907 @default.
- W3171407144 hasConceptScore W3171407144C2910001868 @default.
- W3171407144 hasConceptScore W3171407144C38652104 @default.
- W3171407144 hasConceptScore W3171407144C39389867 @default.
- W3171407144 hasConceptScore W3171407144C41008148 @default.
- W3171407144 hasConceptScore W3171407144C69360830 @default.
- W3171407144 hasConceptScore W3171407144C75684735 @default.