Matches in SemOpenAlex for { <https://semopenalex.org/work/W3171489653> ?p ?o ?g. }
- W3171489653 endingPage "2231" @default.
- W3171489653 startingPage "2231" @default.
- W3171489653 abstract "The scope of this work was to evaluate simulated carbon monoxide (CO) and aerosol optical depth (AOD) from the CAM-chem model against observed satellite data and additionally explore the empirical relationship of CO, AOD and fire radiative power (FRP). The simulated seasonal global concentrations of CO and AOD were compared, respectively, with the Measurements of Pollution in the Troposphere (MOPITT) and the Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite products for the period 2010–2014. The CAM-chem simulations were performed with two configurations: (A) tropospheric-only; and (B) tropospheric with stratospheric chemistry. Our results show that the spatial and seasonal distributions of CO and AOD were reasonably reproduced in both model configurations, except over central China, central Africa and equatorial regions of the Atlantic and Western Pacific, where CO was overestimated by 10–50 ppb. In configuration B, the positive CO bias was significantly reduced due to the inclusion of dry deposition, which was not present in the model configuration A. There was greater CO loss due to the chemical reactions, and shorter lifetime of the species with stratospheric chemistry. In summary, the model has difficulty in capturing the exact location of the maxima of the seasonal AOD distributions in both configurations. The AOD was overestimated by 0.1 to 0.25 over desert regions of Africa, the Middle East and Asia in both configurations, but the positive bias was even higher in the version with added stratospheric chemistry. By contrast, the AOD was underestimated over regions associated with anthropogenic activity, such as eastern China and northern India. Concerning the correlations between CO, AOD and FRP, high CO is found during March–April–May (MAM) in the Northern Hemisphere, mainly in China. In the Southern Hemisphere, high CO, AOD, and FRP values were found during August–September–October (ASO) due to fires, mostly in South America and South Africa. In South America, high AOD levels were observed over subtropical Brazil, Paraguay and Bolivia. Sparsely urbanized regions showed higher correlations between CO and FRP (0.7–0.9), particularly in tropical areas, such as the western Amazon region. There was a high correlation between CO and aerosols from biomass burning at the transition between the forest and savanna environments over eastern and central Africa. It was also possible to observe the transport of these pollutants from the African continent to the Brazilian coast. High correlations between CO and AOD were found over southeastern Asian countries, and correlations between FRP and AOD (0.5–0.8) were found over higher latitude regions such as Canada and Siberia as well as in tropical areas. Higher correlations between CO and FRP are observed in Savanna and Tropical forests (South America, Central America, Africa, Australia, and Southeast Asia) than FRP x AOD. In contrast, boreal forests in Russia, particularly in Siberia, show a higher FRP x AOD correlation than FRP x CO. In tropical forests, CO production is likely favored over aerosol, while in temperate forests, aerosol production is more than CO compared to tropical forests. On the east coast of the United States, the eastern border of the USA with Canada, eastern China, on the border between China, Russia, and Mongolia, and the border between North India and China, there is a high correlation of CO x AOD and a low correlation between FRP with both CO and AOD. Therefore, such emissions in these regions are not generated by forest fires but by industries and vehicular emissions since these are densely populated regions." @default.
- W3171489653 created "2021-06-22" @default.
- W3171489653 creator A5002156951 @default.
- W3171489653 creator A5002208218 @default.
- W3171489653 creator A5007106800 @default.
- W3171489653 creator A5008564054 @default.
- W3171489653 creator A5012657738 @default.
- W3171489653 creator A5015531483 @default.
- W3171489653 creator A5021738366 @default.
- W3171489653 creator A5036666314 @default.
- W3171489653 creator A5040498301 @default.
- W3171489653 creator A5042122266 @default.
- W3171489653 creator A5081471498 @default.
- W3171489653 creator A5085493672 @default.
- W3171489653 creator A5088673845 @default.
- W3171489653 date "2021-06-07" @default.
- W3171489653 modified "2023-10-16" @default.
- W3171489653 title "Evaluating Carbon Monoxide and Aerosol Optical Depth Simulations from CAM-Chem Using Satellite Observations" @default.
- W3171489653 cites W1662414056 @default.
- W3171489653 cites W1847304143 @default.
- W3171489653 cites W1966991617 @default.
- W3171489653 cites W1969191175 @default.
- W3171489653 cites W1970630256 @default.
- W3171489653 cites W1970745285 @default.
- W3171489653 cites W1974656364 @default.
- W3171489653 cites W1977945389 @default.
- W3171489653 cites W1978358000 @default.
- W3171489653 cites W1979541009 @default.
- W3171489653 cites W1979890053 @default.
- W3171489653 cites W1989445534 @default.
- W3171489653 cites W1998065797 @default.
- W3171489653 cites W1998525509 @default.
- W3171489653 cites W2000809920 @default.
- W3171489653 cites W2002570697 @default.
- W3171489653 cites W2012196264 @default.
- W3171489653 cites W2016868832 @default.
- W3171489653 cites W2025051238 @default.
- W3171489653 cites W2032075214 @default.
- W3171489653 cites W2034026239 @default.
- W3171489653 cites W2045129899 @default.
- W3171489653 cites W2049426418 @default.
- W3171489653 cites W2066605780 @default.
- W3171489653 cites W2067296302 @default.
- W3171489653 cites W2069002099 @default.
- W3171489653 cites W2069665132 @default.
- W3171489653 cites W2070533532 @default.
- W3171489653 cites W2073904902 @default.
- W3171489653 cites W2077707938 @default.
- W3171489653 cites W2079699162 @default.
- W3171489653 cites W2082562995 @default.
- W3171489653 cites W2083165860 @default.
- W3171489653 cites W2086693959 @default.
- W3171489653 cites W2094466200 @default.
- W3171489653 cites W2096399836 @default.
- W3171489653 cites W2096410503 @default.
- W3171489653 cites W2098947226 @default.
- W3171489653 cites W2100220720 @default.
- W3171489653 cites W2102170561 @default.
- W3171489653 cites W2102436762 @default.
- W3171489653 cites W2105179953 @default.
- W3171489653 cites W2105463749 @default.
- W3171489653 cites W2110179017 @default.
- W3171489653 cites W2117605914 @default.
- W3171489653 cites W2118382290 @default.
- W3171489653 cites W2122871233 @default.
- W3171489653 cites W2123003323 @default.
- W3171489653 cites W2124090423 @default.
- W3171489653 cites W2124731444 @default.
- W3171489653 cites W2125927661 @default.
- W3171489653 cites W2130871986 @default.
- W3171489653 cites W2133481110 @default.
- W3171489653 cites W2136263534 @default.
- W3171489653 cites W2138971645 @default.
- W3171489653 cites W2139206491 @default.
- W3171489653 cites W2139836502 @default.
- W3171489653 cites W2144055354 @default.
- W3171489653 cites W2145265567 @default.
- W3171489653 cites W2150512043 @default.
- W3171489653 cites W2151036870 @default.
- W3171489653 cites W2151181273 @default.
- W3171489653 cites W2152811544 @default.
- W3171489653 cites W2153226382 @default.
- W3171489653 cites W2158426942 @default.
- W3171489653 cites W2159443068 @default.
- W3171489653 cites W2159896542 @default.
- W3171489653 cites W2163667214 @default.
- W3171489653 cites W2164197621 @default.
- W3171489653 cites W2164231461 @default.
- W3171489653 cites W2164250405 @default.
- W3171489653 cites W2170531874 @default.
- W3171489653 cites W2234767231 @default.
- W3171489653 cites W2314333762 @default.
- W3171489653 cites W2345244249 @default.
- W3171489653 cites W2407808740 @default.
- W3171489653 cites W2428870191 @default.
- W3171489653 cites W2470368821 @default.
- W3171489653 cites W2514447684 @default.
- W3171489653 cites W2519516676 @default.