Matches in SemOpenAlex for { <https://semopenalex.org/work/W3171508268> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3171508268 endingPage "17" @default.
- W3171508268 startingPage "1" @default.
- W3171508268 abstract "Deep neural network models built by the appropriate design decisions are crucial to obtain the desired classifier performance. This is especially desired when predicting fault proneness of software modules. When correctly identified, this could help in reducing the testing cost by directing the efforts more towards the modules identified to be fault prone. To be able to build an efficient deep neural network model, it is important that the parameters such as number of hidden layers, number of nodes in each layer, and training details such as learning rate and regularization methods be investigated in detail. The objective of this paper is to show the importance of hyperparameter tuning in developing efficient deep neural network models for predicting fault proneness of software modules and to compare the results with other machine learning algorithms. It is shown that the proposed model outperforms the other algorithms in most cases." @default.
- W3171508268 created "2021-06-22" @default.
- W3171508268 creator A5016329881 @default.
- W3171508268 creator A5047865082 @default.
- W3171508268 creator A5066268521 @default.
- W3171508268 date "2021-06-11" @default.
- W3171508268 modified "2023-09-25" @default.
- W3171508268 title "Impact of Parameter Tuning for Optimizing Deep Neural Network Models for Predicting Software Faults" @default.
- W3171508268 cites W1974825269 @default.
- W3171508268 cites W1976850132 @default.
- W3171508268 cites W1978937721 @default.
- W3171508268 cites W1998661617 @default.
- W3171508268 cites W2019831608 @default.
- W3171508268 cites W2026750231 @default.
- W3171508268 cites W2032968695 @default.
- W3171508268 cites W2081025867 @default.
- W3171508268 cites W2090854192 @default.
- W3171508268 cites W2099919734 @default.
- W3171508268 cites W2112032657 @default.
- W3171508268 cites W2145793758 @default.
- W3171508268 cites W2305460223 @default.
- W3171508268 cites W2360967250 @default.
- W3171508268 cites W2507665469 @default.
- W3171508268 cites W2606020393 @default.
- W3171508268 cites W2769830826 @default.
- W3171508268 cites W2778591805 @default.
- W3171508268 cites W2789977158 @default.
- W3171508268 cites W2792410390 @default.
- W3171508268 cites W2884166952 @default.
- W3171508268 cites W2904785817 @default.
- W3171508268 cites W2905816416 @default.
- W3171508268 cites W2952131664 @default.
- W3171508268 cites W2980281552 @default.
- W3171508268 cites W2983209690 @default.
- W3171508268 cites W2986296038 @default.
- W3171508268 cites W2998506103 @default.
- W3171508268 cites W3009818168 @default.
- W3171508268 cites W3010712377 @default.
- W3171508268 cites W3011974631 @default.
- W3171508268 cites W3022309230 @default.
- W3171508268 cites W3035711813 @default.
- W3171508268 cites W3045004532 @default.
- W3171508268 cites W3084446632 @default.
- W3171508268 doi "https://doi.org/10.1155/2021/6662932" @default.
- W3171508268 hasPublicationYear "2021" @default.
- W3171508268 type Work @default.
- W3171508268 sameAs 3171508268 @default.
- W3171508268 citedByCount "2" @default.
- W3171508268 countsByYear W31715082682023 @default.
- W3171508268 crossrefType "journal-article" @default.
- W3171508268 hasAuthorship W3171508268A5016329881 @default.
- W3171508268 hasAuthorship W3171508268A5047865082 @default.
- W3171508268 hasAuthorship W3171508268A5066268521 @default.
- W3171508268 hasBestOaLocation W31715082681 @default.
- W3171508268 hasConcept C108583219 @default.
- W3171508268 hasConcept C119857082 @default.
- W3171508268 hasConcept C124101348 @default.
- W3171508268 hasConcept C154945302 @default.
- W3171508268 hasConcept C199360897 @default.
- W3171508268 hasConcept C2776135515 @default.
- W3171508268 hasConcept C2777904410 @default.
- W3171508268 hasConcept C2984842247 @default.
- W3171508268 hasConcept C41008148 @default.
- W3171508268 hasConcept C50644808 @default.
- W3171508268 hasConcept C8642999 @default.
- W3171508268 hasConcept C95623464 @default.
- W3171508268 hasConceptScore W3171508268C108583219 @default.
- W3171508268 hasConceptScore W3171508268C119857082 @default.
- W3171508268 hasConceptScore W3171508268C124101348 @default.
- W3171508268 hasConceptScore W3171508268C154945302 @default.
- W3171508268 hasConceptScore W3171508268C199360897 @default.
- W3171508268 hasConceptScore W3171508268C2776135515 @default.
- W3171508268 hasConceptScore W3171508268C2777904410 @default.
- W3171508268 hasConceptScore W3171508268C2984842247 @default.
- W3171508268 hasConceptScore W3171508268C41008148 @default.
- W3171508268 hasConceptScore W3171508268C50644808 @default.
- W3171508268 hasConceptScore W3171508268C8642999 @default.
- W3171508268 hasConceptScore W3171508268C95623464 @default.
- W3171508268 hasLocation W31715082681 @default.
- W3171508268 hasOpenAccess W3171508268 @default.
- W3171508268 hasPrimaryLocation W31715082681 @default.
- W3171508268 hasRelatedWork W2791691546 @default.
- W3171508268 hasRelatedWork W2950066684 @default.
- W3171508268 hasRelatedWork W3047644063 @default.
- W3171508268 hasRelatedWork W3158264953 @default.
- W3171508268 hasRelatedWork W4281616679 @default.
- W3171508268 hasRelatedWork W4283697347 @default.
- W3171508268 hasRelatedWork W4298144215 @default.
- W3171508268 hasRelatedWork W4298388782 @default.
- W3171508268 hasRelatedWork W4307195028 @default.
- W3171508268 hasRelatedWork W4310989423 @default.
- W3171508268 hasVolume "2021" @default.
- W3171508268 isParatext "false" @default.
- W3171508268 isRetracted "false" @default.
- W3171508268 magId "3171508268" @default.
- W3171508268 workType "article" @default.