Matches in SemOpenAlex for { <https://semopenalex.org/work/W3171589826> ?p ?o ?g. }
- W3171589826 endingPage "2486" @default.
- W3171589826 startingPage "2471" @default.
- W3171589826 abstract "Although surface with multiple holes (SMHs) is widely used in industrial components, the precise inspection of SMH is a knotty task due to the inefficiency of traditional surface inspection technology. Recently, a five-axis surface sweep scanning approach is emerging and shows great potential to boost the surface inspection efficiency by sensing surface in a continuous sweep scanning way. However, an efficient sweep scanning path should cater to the unique kinematic characteristics of the five-axis inspection system. In this article, we present an approach to automatically generate efficient five-axis sweep scanning paths for inspecting SMH. First, the skeleton of SMH is extracted along with the surface partitioned into several patches, based on which a guiding curve-based sweep scanning path can be defined for each surface patch. By modeling the skeleton of SMH as a directed Euler graph and finding a proper sequence to traverse the graph, a continuous five-axis sweep scanning path is then generated to sweep all patches without any transition among them. The nonsweeping time could be eliminated so that the sweep scanning efficiency is drastically improved in this way. Simulation and physical inspection experiments are conducted on two SMHs, showing that our method significantly outperforms existing approaches, such as the popular zigzag method and the method from the leading commercial software of RENISHAW. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Note to Practitioners</i> —This article aims to generate an efficient sweep scanning path of a five-axis coordinate measuring machine (CMM) for inspecting the SMHs of a precision component, such as an engine block or a gearbox cover. Although traditional five-axis CMM path generation methods can be applied to SMH inspection, most of them are designed for the point-by-point inspection mode, which intrinsically suffers from extremely low efficiency. Recently, an emerging five-axis surface sweep scanning technology shows great potential for boosting the efficiency of surface inspection by using a continuous surface sensing stylus mounted on a rapid rotary probe head. The realization of high-speed five-axis surface scanning depends on a proper sweep scanning path which takes advantage of the superior kinematic performance of the rotary probe head as much as possible and accordingly avoids assigning heavy workload to the three linear axes with weaker kinematic performance. However, up to date, only a handful of five-axis sweep scanning path planning methods are reported and mainly focus on the simple and compact surface. Therefore, existing methods are incompetent to generate a suitable sweep scanning path for high-speed inspection of SMH. For these reasons, we present a novel and practical approach to automatically generate a continuous five-axis sweep scanning path for complex SMH. The generated path exactly meets the unique kinematic requirements of high-speed five-axis inspection and eliminates all noninspection operations. In this way, the SMH inspection can be accomplished with high efficiency." @default.
- W3171589826 created "2021-06-22" @default.
- W3171589826 creator A5000745677 @default.
- W3171589826 creator A5022802322 @default.
- W3171589826 creator A5058044819 @default.
- W3171589826 creator A5061917503 @default.
- W3171589826 creator A5084298164 @default.
- W3171589826 date "2022-07-01" @default.
- W3171589826 modified "2023-10-17" @default.
- W3171589826 title "Skeleton Curve-Guided Five-Axis Sweep Scanning for Surface With Multiple Holes" @default.
- W3171589826 cites W1567858420 @default.
- W3171589826 cites W1985491809 @default.
- W3171589826 cites W1996146855 @default.
- W3171589826 cites W1999690352 @default.
- W3171589826 cites W2005906639 @default.
- W3171589826 cites W2015164669 @default.
- W3171589826 cites W2029087614 @default.
- W3171589826 cites W2032970922 @default.
- W3171589826 cites W2048436819 @default.
- W3171589826 cites W2081231516 @default.
- W3171589826 cites W2105207001 @default.
- W3171589826 cites W2105733544 @default.
- W3171589826 cites W2106191211 @default.
- W3171589826 cites W2106990937 @default.
- W3171589826 cites W2116759445 @default.
- W3171589826 cites W2124387695 @default.
- W3171589826 cites W2129612824 @default.
- W3171589826 cites W2133216841 @default.
- W3171589826 cites W2143118902 @default.
- W3171589826 cites W2144643443 @default.
- W3171589826 cites W2148036799 @default.
- W3171589826 cites W2171820417 @default.
- W3171589826 cites W2193879369 @default.
- W3171589826 cites W2296509063 @default.
- W3171589826 cites W2470413114 @default.
- W3171589826 cites W2478342984 @default.
- W3171589826 cites W2482636226 @default.
- W3171589826 cites W2548390184 @default.
- W3171589826 cites W2548756185 @default.
- W3171589826 cites W2587753011 @default.
- W3171589826 cites W2747160136 @default.
- W3171589826 cites W2779455732 @default.
- W3171589826 cites W2781879926 @default.
- W3171589826 cites W2789113865 @default.
- W3171589826 cites W2793618212 @default.
- W3171589826 cites W2799864686 @default.
- W3171589826 cites W2805632734 @default.
- W3171589826 cites W2937619506 @default.
- W3171589826 cites W2950111403 @default.
- W3171589826 cites W2965132229 @default.
- W3171589826 cites W3013137088 @default.
- W3171589826 cites W3027429685 @default.
- W3171589826 cites W3034340676 @default.
- W3171589826 cites W3037844805 @default.
- W3171589826 cites W97775199 @default.
- W3171589826 doi "https://doi.org/10.1109/tase.2021.3087353" @default.
- W3171589826 hasPublicationYear "2022" @default.
- W3171589826 type Work @default.
- W3171589826 sameAs 3171589826 @default.
- W3171589826 citedByCount "4" @default.
- W3171589826 countsByYear W31715898262022 @default.
- W3171589826 countsByYear W31715898262023 @default.
- W3171589826 crossrefType "journal-article" @default.
- W3171589826 hasAuthorship W3171589826A5000745677 @default.
- W3171589826 hasAuthorship W3171589826A5022802322 @default.
- W3171589826 hasAuthorship W3171589826A5058044819 @default.
- W3171589826 hasAuthorship W3171589826A5061917503 @default.
- W3171589826 hasAuthorship W3171589826A5084298164 @default.
- W3171589826 hasConcept C11413529 @default.
- W3171589826 hasConcept C121332964 @default.
- W3171589826 hasConcept C132525143 @default.
- W3171589826 hasConcept C146160929 @default.
- W3171589826 hasConcept C154945302 @default.
- W3171589826 hasConcept C199360897 @default.
- W3171589826 hasConcept C2524010 @default.
- W3171589826 hasConcept C2776799497 @default.
- W3171589826 hasConcept C2777735758 @default.
- W3171589826 hasConcept C31972630 @default.
- W3171589826 hasConcept C33923547 @default.
- W3171589826 hasConcept C39920418 @default.
- W3171589826 hasConcept C41008148 @default.
- W3171589826 hasConcept C74650414 @default.
- W3171589826 hasConcept C80444323 @default.
- W3171589826 hasConceptScore W3171589826C11413529 @default.
- W3171589826 hasConceptScore W3171589826C121332964 @default.
- W3171589826 hasConceptScore W3171589826C132525143 @default.
- W3171589826 hasConceptScore W3171589826C146160929 @default.
- W3171589826 hasConceptScore W3171589826C154945302 @default.
- W3171589826 hasConceptScore W3171589826C199360897 @default.
- W3171589826 hasConceptScore W3171589826C2524010 @default.
- W3171589826 hasConceptScore W3171589826C2776799497 @default.
- W3171589826 hasConceptScore W3171589826C2777735758 @default.
- W3171589826 hasConceptScore W3171589826C31972630 @default.
- W3171589826 hasConceptScore W3171589826C33923547 @default.
- W3171589826 hasConceptScore W3171589826C39920418 @default.
- W3171589826 hasConceptScore W3171589826C41008148 @default.
- W3171589826 hasConceptScore W3171589826C74650414 @default.
- W3171589826 hasConceptScore W3171589826C80444323 @default.